000856431 001__ 856431 000856431 005__ 20240711092232.0 000856431 0247_ $$2doi$$a10.1016/j.calphad.2018.05.009 000856431 0247_ $$2ISSN$$a0364-5916 000856431 0247_ $$2ISSN$$a1873-2984 000856431 0247_ $$2WOS$$aWOS:000444666200019 000856431 037__ $$aFZJ-2018-05830 000856431 082__ $$a540 000856431 1001_ $$0P:(DE-HGF)0$$aJantzen, Tatjana$$b0$$eCorresponding author 000856431 245__ $$aAddition of TiO2 and Ti2O3 to the Al2O3-FeO-Fe2O3-MgO System 000856431 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000856431 3367_ $$2DRIVER$$aarticle 000856431 3367_ $$2DataCite$$aOutput Types/Journal article 000856431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539672246_2493 000856431 3367_ $$2BibTeX$$aARTICLE 000856431 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000856431 3367_ $$00$$2EndNote$$aJournal Article 000856431 520__ $$aThe Al2O3-FeO-Fe2O3-MgO-TiO2-Ti2O3 system has been thermodynamically assessed using all available experimental data. Titanium was introduced into the thermodynamic description of the liquid phase as well as of solid solution phases such as MeO, Cubic Spinel, Titania Spinel, Corundum and Pseudobrookite. Particular attention was given to the phase Cubic Spinel which forms a wide miscibility range amongst Fe3O4-TiFe2O4-TiMg2O4-TiMn2O4. In addition, the present modelling of the phase Pseudobrookite allows the description of the experimentally determined mutual solubility between Al2TiO5, MgTi2O5, FeTi2O5, Fe2TiO5 and Ti3O5. 9 titanates as stoichiometric phases have also been included in the database. 000856431 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0 000856431 588__ $$aDataset connected to CrossRef 000856431 7001_ $$0P:(DE-HGF)0$$aHack, Klaus$$b1 000856431 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b2 000856431 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3 000856431 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2018.05.009$$gVol. 62, p. 187 - 200$$p187 - 200$$tCalphad$$v62$$x0364-5916$$y2018 000856431 8564_ $$uhttps://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf$$yRestricted 000856431 8564_ $$uhttps://juser.fz-juelich.de/record/856431/files/1-s2.0-S0364591618300658-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000856431 909CO $$ooai:juser.fz-juelich.de:856431$$pVDB 000856431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b2$$kFZJ 000856431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ 000856431 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0 000856431 9141_ $$y2018 000856431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000856431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2017 000856431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000856431 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000856431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000856431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000856431 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000856431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000856431 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000856431 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000856431 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000856431 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000856431 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 000856431 980__ $$ajournal 000856431 980__ $$aVDB 000856431 980__ $$aI:(DE-Juel1)IEK-2-20101013 000856431 980__ $$aUNRESTRICTED 000856431 981__ $$aI:(DE-Juel1)IMD-1-20101013