000856521 001__ 856521
000856521 005__ 20210129235307.0
000856521 0247_ $$2doi$$a10.1088/1361-6641/aae2f9
000856521 0247_ $$2ISSN$$a0268-1242
000856521 0247_ $$2ISSN$$a1361-6641
000856521 0247_ $$2WOS$$aWOS:000448113100002
000856521 037__ $$aFZJ-2018-05908
000856521 082__ $$a620
000856521 1001_ $$0P:(DE-HGF)0$$aLoo, Roger$$b0$$eCorresponding author
000856521 245__ $$aEpitaxial GeSn: impact of process conditions on material quality
000856521 260__ $$aBristol$$bIOP Publ.$$c2018
000856521 3367_ $$2DRIVER$$aarticle
000856521 3367_ $$2DataCite$$aOutput Types/Journal article
000856521 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1539942304_19857
000856521 3367_ $$2BibTeX$$aARTICLE
000856521 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856521 3367_ $$00$$2EndNote$$aJournal Article
000856521 520__ $$aThe electrical and optical material properties of epitaxial Ge1−xSnx and SiyGe1−x−ySnx are of high interest for novel device applications. However, the limited Sn solubility in Ge makes the epitaxial growth of Ge1−xSnx and SiyGe1−x−ySnx challenging. Most of the literature describing the epitaxial growth is for Ge2H6 and SnCl4 as Ge and Sn precursors, respectively. A more recent publication deals with the epitaxial growth of high-quality Ge1−xSnx with the more conventional GeH4. In this manuscript, we compare the structural and optical material quality of Ge1−xSnx, epitaxially grown on Ge virtual substrates as a function of growth pressure, growth temperature, the choice of the carrier gas (H2 or N2) and the choice of the Ge precursor (GeH4 versus Ge2H6). The best material quality in terms of surface morphology and photoluminescence characteristics is obtained if GeH4 is used as a Ge precursor. For Ge1−xSnx grown with Ge2H6 and at atmospheric pressure, pyramidical defects can be seen and there is a risk for uncontrolled local Sn agglomeration. The pyramidical defects are not observed on Ge1−xSnx layers grown at reduced pressure, but the highest achievable substitutional Sn concentration is lower. No pyramidical defects are found for Ge1−xSnx layers grown with GeH4 and the issue of uncontrolled local Sn agglomeration does not appear.
000856521 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000856521 588__ $$aDataset connected to CrossRef
000856521 7001_ $$0P:(DE-HGF)0$$aShimura, Yosuke$$b1
000856521 7001_ $$0P:(DE-HGF)0$$aIke, Shinichi$$b2
000856521 7001_ $$0P:(DE-HGF)0$$aVohra, Anurag$$b3
000856521 7001_ $$0P:(DE-HGF)0$$aStoica, Toma$$b4
000856521 7001_ $$0P:(DE-Juel1)161180$$aStange, Daniela$$b5
000856521 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b6
000856521 7001_ $$0P:(DE-HGF)0$$aKohen, David$$b7
000856521 7001_ $$0P:(DE-HGF)0$$aMargetis, Joe$$b8
000856521 7001_ $$0P:(DE-HGF)0$$aTolle, John$$b9
000856521 773__ $$0PERI:(DE-600)1361285-2$$a10.1088/1361-6641/aae2f9$$gVol. 33, no. 11, p. 114010 -$$n11$$p114010$$tSemiconductor science and technology$$v33$$x0268-1242$$y2018
000856521 8564_ $$uhttps://juser.fz-juelich.de/record/856521/files/Loo_2018_Semicond._Sci._Technol._33_114010.pdf$$yRestricted
000856521 8564_ $$uhttps://juser.fz-juelich.de/record/856521/files/Loo_2018_Semicond._Sci._Technol._33_114010.pdf?subformat=pdfa$$xpdfa$$yRestricted
000856521 909CO $$ooai:juser.fz-juelich.de:856521$$pVDB
000856521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b5$$kFZJ
000856521 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b6$$kFZJ
000856521 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000856521 9141_ $$y2018
000856521 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000856521 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000856521 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSEMICOND SCI TECH : 2017
000856521 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856521 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856521 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856521 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856521 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856521 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856521 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856521 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856521 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856521 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856521 920__ $$lyes
000856521 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000856521 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000856521 980__ $$ajournal
000856521 980__ $$aVDB
000856521 980__ $$aI:(DE-Juel1)PGI-9-20110106
000856521 980__ $$aI:(DE-82)080009_20140620
000856521 980__ $$aUNRESTRICTED