000856620 001__ 856620
000856620 005__ 20220930130159.0
000856620 0247_ $$2doi$$a10.3390/nano8110869
000856620 0247_ $$2Handle$$a2128/19848
000856620 0247_ $$2WOS$$aWOS:000451316100004
000856620 037__ $$aFZJ-2018-05987
000856620 082__ $$a540
000856620 1001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b0
000856620 245__ $$aAu Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films
000856620 260__ $$aBasel$$bMDPI$$c2018
000856620 3367_ $$2DRIVER$$aarticle
000856620 3367_ $$2DataCite$$aOutput Types/Journal article
000856620 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1543940039_14408
000856620 3367_ $$2BibTeX$$aARTICLE
000856620 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856620 3367_ $$00$$2EndNote$$aJournal Article
000856620 520__ $$aWe investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO 3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO 3 single crystal substrates as a defect formation template for the subsequent growth of SrTiO 3 . We studied in detail the resulting microstructure and the local conducting and switching properties of the SrTiO 3 thin films. We revealed that the Au nanoparticles floated to the SrTiO 3 surface during growth, leaving behind a distorted thin film region in their vicinity. By employing conductive-tip atomic force microscopy, these distorted SrTiO 3 regions are identified as sites of preferential resistive switching. These findings can be attributed to the enhanced oxygen exchange reaction at the surface in these defective regions
000856620 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000856620 7001_ $$0P:(DE-HGF)0$$aSchmidt, D. O.$$b1
000856620 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000856620 7001_ $$0P:(DE-Juel1)138713$$aKruth, Maximilian$$b3
000856620 7001_ $$0P:(DE-HGF)0$$aSimon, U.$$b4
000856620 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5$$eCorresponding author
000856620 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano8110869$$n11$$p869$$tNanomaterials$$v8$$x2079-4991$$y2018
000856620 8564_ $$uhttps://juser.fz-juelich.de/record/856620/files/Invoice_MDPI_nanomaterials-364263_1111.71EUR.pdf
000856620 8564_ $$uhttps://juser.fz-juelich.de/record/856620/files/nanomaterials-08-00869.pdf$$yOpenAccess
000856620 8564_ $$uhttps://juser.fz-juelich.de/record/856620/files/nanomaterials-08-00869.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000856620 8564_ $$uhttps://juser.fz-juelich.de/record/856620/files/Invoice_MDPI_nanomaterials-364263_1111.71EUR.pdf?subformat=pdfa$$xpdfa
000856620 8767_ $$8nanomaterials-364263$$92018-10-18$$d2018-12-05$$eAPC$$jZahlung erfolgt$$zFZJ-2018-05990
000856620 909CO $$ooai:juser.fz-juelich.de:856620$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000856620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000856620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138713$$aForschungszentrum Jülich$$b3$$kFZJ
000856620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
000856620 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000856620 9141_ $$y2018
000856620 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856620 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000856620 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000856620 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2017
000856620 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000856620 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000856620 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856620 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856620 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000856620 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000856620 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856620 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856620 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000856620 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856620 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000856620 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000856620 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000856620 9801_ $$aFullTexts
000856620 980__ $$ajournal
000856620 980__ $$aVDB
000856620 980__ $$aI:(DE-Juel1)PGI-7-20110106
000856620 980__ $$aI:(DE-82)080009_20140620
000856620 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000856620 980__ $$aUNRESTRICTED
000856620 980__ $$aAPC