Hauptseite > Publikationsdatenbank > Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films > print |
001 | 856620 | ||
005 | 20220930130159.0 | ||
024 | 7 | _ | |a 10.3390/nano8110869 |2 doi |
024 | 7 | _ | |a 2128/19848 |2 Handle |
024 | 7 | _ | |a WOS:000451316100004 |2 WOS |
037 | _ | _ | |a FZJ-2018-05987 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Raab, Nicolas |0 P:(DE-Juel1)157925 |b 0 |
245 | _ | _ | |a Au Nanoparticles as Template for Defect Formation in Memristive SrTiO3 Thin Films |
260 | _ | _ | |a Basel |c 2018 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1543940039_14408 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO 3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO 3 single crystal substrates as a defect formation template for the subsequent growth of SrTiO 3 . We studied in detail the resulting microstructure and the local conducting and switching properties of the SrTiO 3 thin films. We revealed that the Au nanoparticles floated to the SrTiO 3 surface during growth, leaving behind a distorted thin film region in their vicinity. By employing conductive-tip atomic force microscopy, these distorted SrTiO 3 regions are identified as sites of preferential resistive switching. These findings can be attributed to the enhanced oxygen exchange reaction at the surface in these defective regions |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
700 | 1 | _ | |a Schmidt, D. O. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Du, Hongchu |0 P:(DE-Juel1)145710 |b 2 |
700 | 1 | _ | |a Kruth, Maximilian |0 P:(DE-Juel1)138713 |b 3 |
700 | 1 | _ | |a Simon, U. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.3390/nano8110869 |0 PERI:(DE-600)2662255-5 |n 11 |p 869 |t Nanomaterials |v 8 |y 2018 |x 2079-4991 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856620/files/Invoice_MDPI_nanomaterials-364263_1111.71EUR.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856620/files/nanomaterials-08-00869.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856620/files/nanomaterials-08-00869.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/856620/files/Invoice_MDPI_nanomaterials-364263_1111.71EUR.pdf?subformat=pdfa |x pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:856620 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145710 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138713 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOMATERIALS-BASEL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|