000856720 001__ 856720
000856720 005__ 20240709074257.0
000856720 0247_ $$2doi$$a10.1029/2018GL079259
000856720 0247_ $$2ISSN$$a0094-8276
000856720 0247_ $$2ISSN$$a1944-8007
000856720 0247_ $$2Handle$$a2128/20022
000856720 0247_ $$2WOS$$aWOS:000445727500068
000856720 0247_ $$2altmetric$$aaltmetric:47145318
000856720 037__ $$aFZJ-2018-06071
000856720 082__ $$a550
000856720 1001_ $$0P:(DE-Juel1)156366$$aZhu, Yajun$$b0$$ufzj
000856720 245__ $$aAtomic Oxygen Abundance Retrieved From SCIAMACHY Hydroxyl Nightglow Measurements
000856720 260__ $$aHoboken, NJ$$bWiley$$c2018
000856720 3367_ $$2DRIVER$$aarticle
000856720 3367_ $$2DataCite$$aOutput Types/Journal article
000856720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542200183_14806
000856720 3367_ $$2BibTeX$$aARTICLE
000856720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000856720 3367_ $$00$$2EndNote$$aJournal Article
000856720 520__ $$aWe present a new atomic oxygen data set based on Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) hydroxyl short‐wave infrared data. The OH spectra stem from the OH(9‐6) ro‐vibrational transition. These data and atomic oxygen obtained from SCIAMACHY O(1S) green line measurements, which is an independent data set in terms of methodology and radiometry, typically agree within 10–20%. This confirms the corresponding models of OH and O(1S), in particular, the relevance of the reaction between atomic oxygen and ozone in the photochemical model. The agreement between the SCIAMACHY data and the most recent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) atomic oxygen data set of Mlynczak et al. (2018, https://doi.org/10.1029/2018GL077377) is significantly better than for the previous SABER data set of Mlynczak et al. (2013, https://doi.org/10.1002/jgrd.50401). The agreement decreases if the SCIAMACHY forward model parameters are applied to SABER data. A similar agreement is achieved with the data of Panka et al. (2018, https://doi.org/10.1029/2018GL077677), which was retrieved from SABER data using a principally different retrieval approach.
000856720 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000856720 588__ $$aDataset connected to CrossRef
000856720 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, Martin$$b1$$eCorresponding author$$ufzj
000856720 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2018GL079259$$gVol. 45, no. 17, p. 9314 - 9322$$n17$$p9314 - 9322$$tGeophysical research letters$$v45$$x0094-8276$$y2018
000856720 8564_ $$uhttps://juser.fz-juelich.de/record/856720/files/20181024124543721.pdf
000856720 8564_ $$uhttps://juser.fz-juelich.de/record/856720/files/20181024124543721.pdf?subformat=pdfa$$xpdfa
000856720 8564_ $$uhttps://juser.fz-juelich.de/record/856720/files/2018GL079259.pdf$$yPublished on 2018-09-14. Available in OpenAccess from 2019-03-14.
000856720 8564_ $$uhttps://juser.fz-juelich.de/record/856720/files/2018GL079259.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-09-14. Available in OpenAccess from 2019-03-14.
000856720 8767_ $$89873060$$92018-09-25$$d2018-10-26$$ePage charges$$jZahlung erfolgt$$z500 USD
000856720 909CO $$ooai:juser.fz-juelich.de:856720$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000856720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156366$$aForschungszentrum Jülich$$b0$$kFZJ
000856720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129128$$aForschungszentrum Jülich$$b1$$kFZJ
000856720 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000856720 9141_ $$y2018
000856720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000856720 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000856720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2017
000856720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000856720 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000856720 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000856720 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000856720 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000856720 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000856720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000856720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000856720 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000856720 9801_ $$aAPC
000856720 9801_ $$aFullTexts
000856720 980__ $$ajournal
000856720 980__ $$aVDB
000856720 980__ $$aUNRESTRICTED
000856720 980__ $$aI:(DE-Juel1)IEK-7-20101013
000856720 980__ $$aAPC
000856720 981__ $$aI:(DE-Juel1)ICE-4-20101013