001     857784
005     20240610115705.0
024 7 _ |a 10.3390/molecules23123105
|2 doi
024 7 _ |a 2128/20695
|2 Handle
024 7 _ |a pmid:30486450
|2 pmid
024 7 _ |a WOS:000454523000055
|2 WOS
024 7 _ |a altmetric:51837378
|2 altmetric
037 _ _ |a FZJ-2018-06751
082 _ _ |a 540
100 1 _ |a Höfig, Henning
|0 P:(DE-Juel1)165927
|b 0
245 _ _ |a Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species
260 _ _ |a Basel
|c 2018
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544617453_11031
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cerminara, Michele
|0 P:(DE-Juel1)166090
|b 1
700 1 _ |a Ritter, Ilona
|0 P:(DE-Juel1)131979
|b 2
|u fzj
700 1 _ |a Schöne, Antonie
|0 P:(DE-Juel1)156122
|b 3
700 1 _ |a Pohl, Martina
|0 P:(DE-Juel1)131522
|b 4
|u fzj
700 1 _ |a Steffen, Victoria
|0 P:(DE-Juel1)145517
|b 5
700 1 _ |a Walter, Julia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vergara Dal Pont, Ignacio
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Katranidis, Alexandros
|0 P:(DE-Juel1)131971
|b 8
|u fzj
700 1 _ |a Fitter, Jörg
|0 P:(DE-Juel1)131961
|b 9
|e Corresponding author
773 _ _ |a 10.3390/molecules23123105
|g Vol. 23, no. 12, p. 3105 -
|0 PERI:(DE-600)2008644-1
|n 12
|p 3105 -
|t Molecules
|v 23
|y 2018
|x 1420-3049
856 4 _ |u https://juser.fz-juelich.de/record/857784/files/Invoice_MDPI_molecules-390231_0.00EUR.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/857784/files/Invoice_MDPI_molecules-390231_0.00EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857784/files/molecules-23-03105.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857784/files/molecules-23-03105.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857784
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165927
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131979
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131522
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145517
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131961
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOLECULES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)VDB55
|k IBT-1
|l Biotechnologie 1
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
980 _ _ |a I:(DE-Juel1)VDB55
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21