000857792 001__ 857792
000857792 005__ 20240712113124.0
000857792 0247_ $$2doi$$a10.1021/acs.chemmater.8b02015
000857792 0247_ $$2ISSN$$a0897-4756
000857792 0247_ $$2ISSN$$a1520-5002
000857792 0247_ $$2WOS$$aWOS:000445972100013
000857792 037__ $$aFZJ-2018-06759
000857792 082__ $$a540
000857792 1001_ $$0P:(DE-HGF)0$$aKolek, Martin$$b0
000857792 245__ $$aMechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries
000857792 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000857792 3367_ $$2DRIVER$$aarticle
000857792 3367_ $$2DataCite$$aOutput Types/Journal article
000857792 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580983263_22021
000857792 3367_ $$2BibTeX$$aARTICLE
000857792 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857792 3367_ $$00$$2EndNote$$aJournal Article
000857792 520__ $$aOrganic electrode materials are among the promising next generation compounds for battery energy storage as a greener and cheaper alternative to transition-metal-based electrodes. A prominent class among them are redox polymers, which can reversibly store energy and can be capable of fast redox processes. Nevertheless, drawbacks are their often low specific energy and lifetime. A main challenge is their solubility in battery electrolytes, which is detrimental to cell performance. Herein, we discuss the solubility properties of a polyvinyl-based redox polymer with a methylphenothiazine side group (PVMPT) in organic-solvent-based battery electrolytes and generate new insights into the mechanism of the redeposition process of dissolved active material. We addressed the mechanistic studies of this “polymer–electrolyte cross-talk” with microscopic and spectroscopic methods. These findings are important for the molecular design of new organic electrode materials, since the redeposited polymer showed improved cycling performance and outstanding cycling stabilities. We herein aim to draw a bigger picture of the solubility of redox polymers and its consequences and motivate the scientific community to reconsider the common conception of the deteriorating nature of the solubility of organic battery electrode materials.
000857792 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857792 588__ $$aDataset connected to CrossRef
000857792 7001_ $$0P:(DE-HGF)0$$aOtteny, Fabian$$b1
000857792 7001_ $$0P:(DE-HGF)0$$aBecking, Jens$$b2
000857792 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
000857792 7001_ $$00000-0002-2430-1380$$aEsser, Birgit$$b4$$eCorresponding author
000857792 7001_ $$00000-0003-4378-4805$$aBieker, Peter$$b5$$eCorresponding author
000857792 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.8b02015$$gVol. 30, no. 18, p. 6307 - 6317$$n18$$p6307 - 6317$$tChemistry of materials$$v30$$x1520-5002$$y2018
000857792 8564_ $$uhttps://juser.fz-juelich.de/record/857792/files/acs.chemmater.8b02015-1.pdf$$yRestricted
000857792 8564_ $$uhttps://juser.fz-juelich.de/record/857792/files/acs.chemmater.8b02015-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857792 909CO $$ooai:juser.fz-juelich.de:857792$$pVDB
000857792 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000857792 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857792 9141_ $$y2019
000857792 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000857792 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2017
000857792 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857792 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857792 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857792 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857792 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857792 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857792 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857792 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857792 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857792 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857792 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2017
000857792 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000857792 980__ $$ajournal
000857792 980__ $$aVDB
000857792 980__ $$aI:(DE-Juel1)IEK-12-20141217
000857792 980__ $$aUNRESTRICTED
000857792 981__ $$aI:(DE-Juel1)IMD-4-20141217