Journal Article FZJ-2018-06759

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries

 ;  ;  ;  ;  ;

2018
American Chemical Society Washington, DC

Chemistry of materials 30(18), 6307 - 6317 () [10.1021/acs.chemmater.8b02015]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Organic electrode materials are among the promising next generation compounds for battery energy storage as a greener and cheaper alternative to transition-metal-based electrodes. A prominent class among them are redox polymers, which can reversibly store energy and can be capable of fast redox processes. Nevertheless, drawbacks are their often low specific energy and lifetime. A main challenge is their solubility in battery electrolytes, which is detrimental to cell performance. Herein, we discuss the solubility properties of a polyvinyl-based redox polymer with a methylphenothiazine side group (PVMPT) in organic-solvent-based battery electrolytes and generate new insights into the mechanism of the redeposition process of dissolved active material. We addressed the mechanistic studies of this “polymer–electrolyte cross-talk” with microscopic and spectroscopic methods. These findings are important for the molecular design of new organic electrode materials, since the redeposited polymer showed improved cycling performance and outstanding cycling stabilities. We herein aim to draw a bigger picture of the solubility of redox polymers and its consequences and motivate the scientific community to reconsider the common conception of the deteriorating nature of the solubility of organic battery electrode materials.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database

 Record created 2018-11-26, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)