Journal Article FZJ-2018-06770

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Determination of the mechanical integrity of polyvinylidene difluoride in LiNi1/3Co1/3Mn1/3O2 electrodes for lithium ion batteries by use of the micro-indentation technique

 ;  ;  ;

2018
Elsevier New York, NY [u.a.]

Journal of power sources 391, 80 - 85 () [10.1016/j.jpowsour.2018.03.064]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Understanding the mechanical aging of lithium ion batteries influencing the binder stability is of particular interest for enhanced battery life. In this study we present an indentation method to investigate the changes in the elasticity of PVdF in NCM electrodes with high reproducibility. To determine changes in elasticity by calculating the indentation work (ηit), a 50 μm flat punch indenter was used. In addition, a drying procedure for DMC washed samples was evaluated to reduce the effect of the washing procedure on the elasticity due to swelling of the binder. NCM electrodes soaked with electrolyte and electrodes after formation were investigated, showing a significant decrease in elasticity due to the contact with the LiPF6 containing organic carbonate solvent based electrolyte and due to the electrochemical formation procedure. Further electrochemical aging reduced the elasticity to nearly ≈50% compared to the pristine electrode. Method development and the obtained results are discussed in detail. The developed method provides a low standard deviation and high reproducibility. Hence, it is a valid methodology for the quantification of related aging mechanisms taking place in lithium ion batteries.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database

 Record created 2018-11-26, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)