Journal Article FZJ-2018-06806

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Non-Pairwise Interactions in Parahydrogen Experiments: Nuclear Exchange of Single Protons Enables Bulk Water Hyperpolarization

 ;  ;  ;

2018
Wiley-VCH Verl. Weinheim

ChemPhysChem 19(20), 2614 - 2620 () [10.1002/cphc.201800521]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Hyperpolarization with parahydrogen (p‐H2) is a fast developing field in NMR, which enables overcoming the inherent low sensitivity of this important technique. The hyperpolarization of solvents, particularly of water, offers a wide range of applications for structural investigations of macromolecules and biomedical imaging. Until lately, only organic solvents could be polarized by means of parahydrogen via coherent redistribution of polarization (SABRE mechanism). In this study, we investigate in detail the mechanism of the recently reported bulk water hyperpolarization with a combination of theoretical and experimental methods, finally showing a chemical exchange pathway of single protons as basis for the enhancement. The prerequisites for preserving hyperpolarization upon separation of the two hydrogen atoms of p−H2 are demonstrated by theoretical examinations of the boundary conditions for the hyperpolarization experiments in accordance with the OneH−PHIP theory. These findings yielded the proposal of the novel NEPTUN mechanism (Nuclear Exchange Polarization by Transposing Unattached Nuclei) as the non‐hydrogenative equivalent to the established OneH−PHIP and thus the missing link in parahydrogen hyperpolarization theory.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2018
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database

 Record created 2018-11-26, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)