001     858245
005     20240610115733.0
024 7 _ |a 10.1088/1367-2630/aaf544
|2 doi
024 7 _ |a 2128/21500
|2 Handle
024 7 _ |a WOS:000456276000007
|2 WOS
024 7 _ |a altmetric:54109502
|2 altmetric
037 _ _ |a FZJ-2018-07145
082 _ _ |a 530
100 1 _ |a Rode, Sebastian
|0 P:(DE-Juel1)162464
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Sperm motility in modulated microchannels
260 _ _ |a [London]
|c 2019
|b IOP73379
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552413971_13873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sperm cells swim through the fluid by a periodic wave-like beating of their flagellum. At low Reynolds numbers and in confinement, the directed motion of sperm and other microswimmers is strongly influenced by steric and hydrodynamic wall interactions. We model sperm motility in mesoscale hydrodynamics simulations by imposing a planar traveling bending wave along the flagellum. Sperm are simulated swimming in curved, straight, shallow and zigzag-shaped microchannels. Changes in the sidewall modulations and the imposed beat pattern allow the identification of a strong dependence of the surface attraction on the beat-shape envelope of the sperm cell. For swimming in zigzag microchannels, the deflection-angle distribution at sharp corners is calculated and found to be in good agreement with recent microfluidic experiments. The simulations reveal a strong dependence of the deflection angle on the orientation of the beat plane with respect to the channel sidewall, and thus deepen the understanding of sperm navigation under strong confinement. Detachment of sperm, while swimming along curved walls, is dominated by the change of beat- plane orientation. Therefore, either the emergence of a nonplanar component of the flagellar beat with increasing wavelength or the strong confinement in shallow channels drastically increases wall attraction. Our simulation results reveal a consistent picture of passive sperm guidance that is dominated by the steric interactions of the beat pattern with the nearby surfaces.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
536 _ _ |a Hydrodynamics of Active Biological Systems (jiff26_20110501)
|0 G:(DE-Juel1)jiff26_20110501
|c jiff26_20110501
|f Hydrodynamics of Active Biological Systems
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elgeti, Jens
|0 P:(DE-Juel1)130629
|b 1
|u fzj
700 1 _ |a Gompper, Gerhard
|0 P:(DE-Juel1)130665
|b 2
773 _ _ |a 10.1088/1367-2630/aaf544
|0 PERI:(DE-600)1464444-7
|p 013016
|t New journal of physics
|v 21
|y 2019
|x 1367-2630
856 4 _ |u https://juser.fz-juelich.de/record/858245/files/8109957_0.pdf
856 4 _ |u https://juser.fz-juelich.de/record/858245/files/8109957_0.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/858245/files/Rode_2019_New_J._Phys._21_013016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858245/files/Rode_2019_New_J._Phys._21_013016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:858245
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162464
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130629
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130665
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21