000858247 001__ 858247
000858247 005__ 20240313103111.0
000858247 0247_ $$2doi$$a10.3389/fninf.2018.00081
000858247 0247_ $$2Handle$$a2128/20351
000858247 0247_ $$2pmid$$apmid:30534066
000858247 0247_ $$2WOS$$aWOS:000451351200001
000858247 0247_ $$2altmetric$$aaltmetric:51749979
000858247 037__ $$aFZJ-2018-07146
000858247 041__ $$aEnglish
000858247 082__ $$a610
000858247 1001_ $$0P:(DE-Juel1)168379$$aTrensch, Guido$$b0$$eCorresponding author$$ufzj
000858247 245__ $$aRigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data
000858247 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000858247 3367_ $$2DRIVER$$aarticle
000858247 3367_ $$2DataCite$$aOutput Types/Journal article
000858247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563261639_618
000858247 3367_ $$2BibTeX$$aARTICLE
000858247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858247 3367_ $$00$$2EndNote$$aJournal Article
000858247 520__ $$aThe reproduction and replication of scientific results is an indispensable aspect of good scientific practice, enabling previous studies to be built upon and increasing our level of confidence in them. However, reproducibility and replicability are not sufficient: an incorrect result will be accurately reproduced if the same incorrect methods are used. For the field of simulations of complex neural networks, the causes of incorrect results vary from insufficient model implementations and data analysis methods, deficiencies in workmanship (e.g., simulation planning, setup, and execution) to errors induced by hardware constraints (e.g., limitations in numerical precision). In order to build credibility, methods such as verification and validation have been developed, but they are not yet well-established in the field of neural network modeling and simulation, partly due to ambiguity concerning the terminology. In this manuscript, we propose a terminology for model verification and validation in the field of neural network modeling and simulation. We outline a rigorous workflow derived from model verification and validation methodologies for increasing model credibility when it is not possible to validate against experimental data. We compare a published minimal spiking network model capable of exhibiting the development of polychronous groups, to its reproduction on the SpiNNaker neuromorphic system, where we consider the dynamics of several selected network states. As a result, by following a formalized process, we show that numerical accuracy is critically important, and even small deviations in the dynamics of individual neurons are expressed in the dynamics at network level.
000858247 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000858247 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000858247 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000858247 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x3
000858247 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4
000858247 588__ $$aDataset connected to CrossRef
000858247 7001_ $$0P:(DE-Juel1)171572$$aGutzen, Robin$$b1$$ufzj
000858247 7001_ $$0P:(DE-Juel1)166002$$aBlundell, Inga$$b2$$ufzj
000858247 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b3$$ufzj
000858247 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b4$$ufzj
000858247 770__ $$aReproducibility and Rigour in Computational Neuroscience
000858247 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2018.00081$$gVol. 12, p. 81$$p81$$tFrontiers in neuroinformatics$$v12$$x1662-5196$$y2018
000858247 8564_ $$uhttps://juser.fz-juelich.de/record/858247/files/2018-0124865-3.pdf
000858247 8564_ $$uhttps://juser.fz-juelich.de/record/858247/files/2018-0124865-3.pdf?subformat=pdfa$$xpdfa
000858247 8564_ $$uhttps://juser.fz-juelich.de/record/858247/files/Trensch%20et%20al%20-%20Rigorous%20Neural%20Network%20Simulations%3A%20A%20Model%20Substantiation%20Methodology%20for%20Increasing%20the%20Correctness%20of%20Simulation%20Results%20in%20the%20Absence%20of%20Experimental%20Validation%20Data.pdf$$yOpenAccess
000858247 8564_ $$uhttps://juser.fz-juelich.de/record/858247/files/Trensch%20et%20al%20-%20Rigorous%20Neural%20Network%20Simulations%3A%20A%20Model%20Substantiation%20Methodology%20for%20Increasing%20the%20Correctness%20of%20Simulation%20Results%20in%20the%20Absence%20of%20Experimental%20Validation%20Data.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858247 8767_ $$d2018-12-06$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2256.75 USD
000858247 909CO $$ooai:juser.fz-juelich.de:858247$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000858247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168379$$aForschungszentrum Jülich$$b0$$kFZJ
000858247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171572$$aForschungszentrum Jülich$$b1$$kFZJ
000858247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166002$$aForschungszentrum Jülich$$b2$$kFZJ
000858247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b3$$kFZJ
000858247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b4$$kFZJ
000858247 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000858247 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000858247 9141_ $$y2018
000858247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858247 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858247 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2017
000858247 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858247 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000858247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858247 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000858247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858247 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858247 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000858247 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000858247 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x3
000858247 9801_ $$aAPC
000858247 9801_ $$aFullTexts
000858247 980__ $$ajournal
000858247 980__ $$aVDB
000858247 980__ $$aI:(DE-Juel1)JSC-20090406
000858247 980__ $$aI:(DE-Juel1)INM-6-20090406
000858247 980__ $$aI:(DE-Juel1)IAS-6-20130828
000858247 980__ $$aI:(DE-Juel1)INM-10-20170113
000858247 980__ $$aAPC
000858247 980__ $$aUNRESTRICTED
000858247 981__ $$aI:(DE-Juel1)IAS-6-20130828