guest :: login
JuSER
    Search   Submit  
Personalize
  • Your alerts
  • Your baskets
  • Your searches
  Help    
Home > Workflow collections > Publication Charges > Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data > Access to Fulltext
  • Information
  • References
  • Citations
  • Keywords
  • Discussion
  • Usage statistics
  • Files
  • Plots
  • Holdings
 
 
Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data - FZJ-2018-07146
 
Main document file(s):
      Trensch et al - Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data
    version 1
    Trensch et al - Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data.pdf [8.64 MB] 06 Dec 2018, 15:38 OpenAccess
    Trensch et al - Rigorous Neural Network Simulations: A Model Substantiation Methodology for Increasing the Correctness of Simulation Results in the Absence of Experimental Validation Data.pdf (pdfa) [5.66 MB] 06 Dec 2018, 15:39 OpenAccess
Administrative file file(s):
    Restricted
      2018-0124865-3
    version 1
    2018-0124865-3.pdf [101.88 KB] 06 Dec 2018, 17:33
    2018-0124865-3.pdf (pdfa) [1.47 MB] 06 Dec 2018, 17:34
Similar records

JuSER :: Search :: Submit :: Personalize :: Help
Powered by Invenio v1.1.7 | join2_v2508a
Maintained by juser@fz-juelich.de

Impressum | Data Privacy Policy
This site is also available in the following languages:
Deutsch  English