000858309 001__ 858309
000858309 005__ 20210129235919.0
000858309 0247_ $$2doi$$a10.1016/j.susc.2018.11.016
000858309 0247_ $$2ISSN$$a0039-6028
000858309 0247_ $$2ISSN$$a0167-2584
000858309 0247_ $$2ISSN$$a1878-1047
000858309 0247_ $$2ISSN$$a1879-2758
000858309 0247_ $$2Handle$$a2128/20354
000858309 0247_ $$2WOS$$aWOS:000460496100020
000858309 0247_ $$2altmetric$$aaltmetric:49679196
000858309 037__ $$aFZJ-2018-07197
000858309 041__ $$aEnglish
000858309 082__ $$a530
000858309 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0
000858309 245__ $$aSurface structures of tellurium on Si(111)–(7×7) studied by low-energy electron diffraction and scanning tunneling microscopy
000858309 260__ $$aAmsterdam$$bElsevier$$c2019
000858309 3367_ $$2DRIVER$$aarticle
000858309 3367_ $$2DataCite$$aOutput Types/Journal article
000858309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544429728_9817
000858309 3367_ $$2BibTeX$$aARTICLE
000858309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858309 3367_ $$00$$2EndNote$$aJournal Article
000858309 520__ $$aThe Te-covered Si(111) surface has received recent interest as a template for the epitaxy of van der Waals (vdW)materials, e.g. Bi2Te3. Here, we report the formation of a Te buffer layer on Si(111)–(7×7) by low-energyelectron diffraction (LEED) and scanning tunneling microscopy (STM). While deposition of several monolayer(ML) of Te on the Si(111)–(7×7) surface at room temperature results in an amorphous Te layer, increasing thesubstrate temperature to 770 K results in a weak (7×7) electron diffraction pattern. Scanning tunneling microscopyof this surface shows remaining corner holes from the Si(111)–(7×7) surface reconstruction andclusters in the faulted and unfaulted halves of the (7×7) unit cells. Increasing the substrate temperature furtherto 920 K leads to a Te/Si(111)–(2 3 × 2 3 )R30° surface reconstruction. We find that this surface configurationhas an atomically flat structure with threefold symmetry.
000858309 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000858309 588__ $$aDataset connected to CrossRef
000858309 7001_ $$0P:(DE-Juel1)168445$$aDoležal, Jiří$$b1
000858309 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b2
000858309 7001_ $$0P:(DE-HGF)0$$aOšt’ádal, Ivan$$b3
000858309 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b4
000858309 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b5$$eCorresponding author
000858309 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2018.11.016$$gVol. 681, p. 130 - 133$$p130 - 133$$tSurface science$$v681$$x0039-6028$$y2019
000858309 8564_ $$uhttps://juser.fz-juelich.de/record/858309/files/1-s2.0-S0039602818308537-main.pdf$$yRestricted
000858309 8564_ $$uhttps://juser.fz-juelich.de/record/858309/files/1810.05553.pdf$$yOpenAccess
000858309 8564_ $$uhttps://juser.fz-juelich.de/record/858309/files/1-s2.0-S0039602818308537-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858309 8564_ $$uhttps://juser.fz-juelich.de/record/858309/files/1810.05553.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858309 909CO $$ooai:juser.fz-juelich.de:858309$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000858309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b2$$kFZJ
000858309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
000858309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b5$$kFZJ
000858309 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000858309 9141_ $$y2019
000858309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF SCI : 2017
000858309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858309 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858309 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858309 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858309 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858309 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858309 920__ $$lyes
000858309 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000858309 980__ $$ajournal
000858309 980__ $$aVDB
000858309 980__ $$aUNRESTRICTED
000858309 980__ $$aI:(DE-Juel1)PGI-3-20110106
000858309 9801_ $$aFullTexts