001     859059
005     20210130000149.0
024 7 _ |2 doi
|a 10.1109/TED.2018.2856891
024 7 _ |2 ISSN
|a 0018-9383
024 7 _ |2 ISSN
|a 0096-2430
024 7 _ |2 ISSN
|a 0197-6370
024 7 _ |2 ISSN
|a 1557-9646
024 7 _ |2 ISSN
|a 2379-8653
024 7 _ |2 ISSN
|a 2379-8661
024 7 _ |2 WOS
|a WOS:000454333500017
037 _ _ |a FZJ-2019-00010
082 _ _ |a 620
100 1 _ |0 P:(DE-HGF)0
|a Horst, Fabian
|b 0
|e Corresponding author
245 _ _ |a 2-D Physics-Based Compact DC Modeling of Double-Gate Tunnel-FETs
260 _ _ |a New York, NY
|b IEEE
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1547476865_19393
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a This paper presents the derivation of a compact dc modeling approach for the band-to-band tunneling current in double-gate tunnel-field effect transistors (TFETs). The physics-based model equations are solved in closed form by including 2-D effects and are implemented in the hardware description language Verilog-A. The verification of the model is done in two steps. First, the modeling approach is verified by TCAD Sentaurus simulation data of the band diagram, the transfer current, and the output current characteristics as well as the output conductance. The modeling results show a good agreement with the TCAD data. Then, measurement data of complementary nanowire gate-all-around TFET devices are utilized to verify the model and to show possible fields of application. As a part of the verification, the benefits and limitations are analyzed and discussed. The numerical stability and flexibility of the model are pointed out by performing simulations of a single-stage TFET inverter.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Farokhnejad, Atieh
|b 1
700 1 _ |0 P:(DE-Juel1)128649
|a Zhao, Qing-Tai
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Iniguez, Benjamin
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kloes, Alexander
|b 4
773 _ _ |0 PERI:(DE-600)2028088-9
|a 10.1109/TED.2018.2856891
|g p. 1 - 7
|n 1
|p 132-138
|t IEEE transactions on electron devices
|v 66
|x 1557-9646
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/859059/files/08423434.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859059/files/08423434.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859059
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128649
|a Forschungszentrum Jülich
|b 2
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b IEEE T ELECTRON DEV : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21