Journal Article FZJ-2019-00010

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
2-D Physics-Based Compact DC Modeling of Double-Gate Tunnel-FETs

 ;  ;  ;  ;

2019
IEEE New York, NY

IEEE transactions on electron devices 66(1), 132-138 () [10.1109/TED.2018.2856891]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This paper presents the derivation of a compact dc modeling approach for the band-to-band tunneling current in double-gate tunnel-field effect transistors (TFETs). The physics-based model equations are solved in closed form by including 2-D effects and are implemented in the hardware description language Verilog-A. The verification of the model is done in two steps. First, the modeling approach is verified by TCAD Sentaurus simulation data of the band diagram, the transfer current, and the output current characteristics as well as the output conductance. The modeling results show a good agreement with the TCAD data. Then, measurement data of complementary nanowire gate-all-around TFET devices are utilized to verify the model and to show possible fields of application. As a part of the verification, the benefits and limitations are analyzed and discussed. The numerical stability and flexibility of the model are pointed out by performing simulations of a single-stage TFET inverter.

Classification:

Contributing Institute(s):
  1. Halbleiter-Nanoelektronik (PGI-9)
Research Program(s):
  1. 521 - Controlling Electron Charge-Based Phenomena (POF3-521) (POF3-521)

Appears in the scientific report 2018
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-9
Workflow collections > Public records
Publications database

 Record created 2019-01-03, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)