001     859068
005     20210130000152.0
024 7 _ |a 10.1109/E3S.2017.8246169
|2 doi
037 _ _ |a FZJ-2019-00019
100 1 _ |a Glass, S.
|0 P:(DE-Juel1)165997
|b 0
|e Corresponding author
111 2 _ |a 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S)
|c Berkeley
|d 2017-10-19 - 2017-10-20
|w USA
245 _ _ |a Examination of a new SiGe/Si heterostructure TFET concept based on vertical tunneling
260 _ _ |c 2017
|b IEEE
295 1 0 |a 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S)
300 _ _ |a 1-3
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1547479465_17711
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a This paper presents a Tunneling Field Effect Transistor concept with a vertical SiGe/Si hetero tunneling junction utilizing a design which promotes line tunneling in a source-gate overlap region. By contrast, the influence of parasitic point tunneling is marginal in the structure, resulting in a sharp turn-on. We show that the growth of a suitable layer stack and manufacturing a device is perfectly feasible and provide first electrical measurements serving as a proof of concept. The route to enhancing the performance by scaling device dimensions and adjusting the channel doping is examined by means of TCAD simulations.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Schulte-Braucks, C.
|0 P:(DE-Juel1)161530
|b 1
700 1 _ |a Kibkalo, L.
|0 P:(DE-Juel1)169107
|b 2
|u fzj
700 1 _ |a Breuer, U.
|0 P:(DE-Juel1)138352
|b 3
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 5
|u fzj
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 6
|u fzj
700 1 _ |a Zhao, Q. T.
|0 P:(DE-Juel1)128649
|b 7
|u fzj
773 _ _ |a 10.1109/E3S.2017.8246169
856 4 _ |u https://juser.fz-juelich.de/record/859068/files/08246169.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/859068/files/08246169.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:859068
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169107
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138352
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128649
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21