Hauptseite > Publikationsdatenbank > Benchmarking of Homojunction Strained-Si NW Tunnel FETs for Basic Analog Functions > print |
001 | 859088 | ||
005 | 20210130000158.0 | ||
024 | 7 | _ | |a 10.1109/TED.2017.2665527 |2 doi |
024 | 7 | _ | |a 0018-9383 |2 ISSN |
024 | 7 | _ | |a 0096-2430 |2 ISSN |
024 | 7 | _ | |a 0197-6370 |2 ISSN |
024 | 7 | _ | |a 1557-9646 |2 ISSN |
024 | 7 | _ | |a 2379-8653 |2 ISSN |
024 | 7 | _ | |a 2379-8661 |2 ISSN |
024 | 7 | _ | |a WOS:000398818400005 |2 WOS |
037 | _ | _ | |a FZJ-2019-00039 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Biswas, Arnab |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Benchmarking of Homojunction Strained-Si NW Tunnel FETs for Basic Analog Functions |
260 | _ | _ | |a New York, NY |c 2017 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1547563577_15236 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This paper reports a compact ambipolar model for homojunction strained-silicon (sSi) nanowire (NW) tunnel FETs (TFETs) capable of accurately describing both I-V and G-V characteristics in all regimes of operation, n- and p-ambipolarity, the superlinear onset of the output characteristics, and the temperature dependence. Experimental calibration on long channel (350 nm) complementary n- and p-type sSi NW TFETs has been performed to create the model, which is used to systematically benchmark the main analog figures of merit at device level: g m /Id, g m /g ds , f T and f T /I d V d , and their temperature dependence from 25°C to 125 °C. This allows for a direct comparison between 28-nm low-power Fully Depleted Silicon on Insulator (FD-SOI) CMOS node and 28-nm double-gate (DG) TFET. We demonstrate unique advantages of sSi DG TFET over CMOS, in terms of: 1) reduced temperature dependence of subthreshold swing; 2) higher transconductance per unit of current with peaks close to 40 V -1 , for currents lower than 10 nA/μm; and 3) higher unity gain frequency per unit power for currents below 10 nA/μm. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Luong, Gia Vinh |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Chowdhury, M. Foysol |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Alper, Cem |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zhao, Qing-Tai |0 P:(DE-Juel1)128649 |b 4 |e Collaboration author |
700 | 1 | _ | |a Udrea, Florin |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Mantl, Siegfried |0 P:(DE-Juel1)128609 |b 6 |u fzj |
700 | 1 | _ | |a Ionescu, Adrian M. |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.1109/TED.2017.2665527 |g Vol. 64, no. 4, p. 1441 - 1448 |0 PERI:(DE-600)2028088-9 |n 4 |p 1441 - 1448 |t IEEE transactions on electron devices |v 64 |y 2017 |x 1557-9646 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859088/files/07867049.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/859088/files/07867049.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:859088 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128649 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128609 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T ELECTRON DEV : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|