001     859227
005     20220930130205.0
024 7 _ |a 10.1016/j.ssnmr.2018.12.003
|2 doi
024 7 _ |a 0926-2040
|2 ISSN
024 7 _ |a 1527-3326
|2 ISSN
024 7 _ |a 2128/21350
|2 Handle
024 7 _ |a pmid:30641444
|2 pmid
024 7 _ |a WOS:000458528900001
|2 WOS
024 7 _ |a altmetric:53552726
|2 altmetric
037 _ _ |a FZJ-2019-00108
082 _ _ |a 540
100 1 _ |a König, Anna
|0 P:(DE-Juel1)165994
|b 0
|u fzj
245 _ _ |a Hyperpolarized MAS NMR of unfolded and misfolded proteins
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science [[-2000]]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548157936_14471
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this article we give an overview over the use of DNP-enhanced solid-state NMR spectroscopy for the investigation of unfolded, disordered and misfolded proteins. We first provide an overview over studies in which DNP spectroscopy has successfully been applied for the structural investigation of well-folded amyloid fibrils formed by short peptides as well as full-length proteins. Sample cooling to cryogenic temperatures often leads to severe line-broadening of resonance signals and thus a loss in resolution. However, inhomogeneous line-broadening at low temperatures provides valuable information about residual dynamics and flexibility in proteins, and, in combination with appropriate selective isotope labeling techniques, inhomogeneous line-widths in disordered proteins or protein regions may be exploited for evaluation of conformational ensembles. In the last paragraph we highlight some recent studies where DNP-enhanced MAS-NMR-spectroscopy was applied to the study of disordered proteins/protein regions and inhomogeneous sample preparations.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schölzel, Daniel
|0 P:(DE-Juel1)165604
|b 1
|u fzj
700 1 _ |a Uluca, Boran
|0 P:(DE-Juel1)161489
|b 2
|u fzj
700 1 _ |a Viennet, Thibault
|0 P:(DE-Juel1)161253
|b 3
700 1 _ |a Akbey, Ümit
|0 P:(DE-Juel1)174523
|b 4
|u fzj
700 1 _ |a Heise, Henrike
|0 P:(DE-Juel1)132002
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.ssnmr.2018.12.003
|g p. S0926204018300894
|0 PERI:(DE-600)2021733-X
|p 1-11
|t Solid state nuclear magnetic resonance
|v 98
|y 2019
|x 0926-2040
856 4 _ |u https://juser.fz-juelich.de/record/859227/files/17991CV3.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/859227/files/17991CV3.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/859227/files/K%C3%B6nig%20et%20al_Hyperpolarized%20MAS%20NMR%20of%20unfolded%20and%20misfolded%20proteins_2019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/859227/files/K%C3%B6nig%20et%20al_Hyperpolarized%20MAS%20NMR%20of%20unfolded%20and%20misfolded%20proteins_2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:859227
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165994
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165604
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161489
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132002
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE NUCL MAG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21