000859332 001__ 859332
000859332 005__ 20210130000234.0
000859332 0247_ $$2doi$$a10.1021/acsphotonics.8b01116
000859332 0247_ $$2WOS$$aWOS:000451496500056
000859332 0247_ $$2altmetric$$aaltmetric:49936623
000859332 037__ $$aFZJ-2019-00200
000859332 082__ $$a530
000859332 1001_ $$0P:(DE-Juel1)161180$$aStange, Daniela$$b0$$eCorresponding author
000859332 245__ $$aGeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers
000859332 260__ $$aWashington, DC$$bACS$$c2018
000859332 3367_ $$2DRIVER$$aarticle
000859332 3367_ $$2DataCite$$aOutput Types/Journal article
000859332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547562946_15236
000859332 3367_ $$2BibTeX$$aARTICLE
000859332 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859332 3367_ $$00$$2EndNote$$aJournal Article
000859332 520__ $$aGeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm.
000859332 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000859332 588__ $$aDataset connected to CrossRef
000859332 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b1
000859332 7001_ $$0P:(DE-HGF)0$$aZabel, Thomas$$b2
000859332 7001_ $$0P:(DE-HGF)0$$aArmand-Pilon, Francesco$$b3
000859332 7001_ $$0P:(DE-Juel1)166341$$aRainko, Denis$$b4$$ufzj
000859332 7001_ $$0P:(DE-HGF)0$$aMarzban, Bahareh$$b5
000859332 7001_ $$0P:(DE-HGF)0$$aZaumseil, Peter$$b6
000859332 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b7
000859332 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b8
000859332 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b9
000859332 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b10$$ufzj
000859332 7001_ $$0P:(DE-HGF)0$$aSigg, Hans$$b11
000859332 7001_ $$0P:(DE-HGF)0$$aWitzens, Jeremy$$b12
000859332 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b13$$ufzj
000859332 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b14
000859332 773__ $$0PERI:(DE-600)2745489-7$$a10.1021/acsphotonics.8b01116$$gVol. 5, no. 11, p. 4628 - 4636$$n11$$p4628 - 4636$$tACS photonics$$v5$$x2330-4022$$y2018
000859332 8564_ $$uhttps://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf$$yRestricted
000859332 8564_ $$uhttps://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf?subformat=pdfa$$xpdfa$$yRestricted
000859332 909CO $$ooai:juser.fz-juelich.de:859332$$pVDB
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b0$$kFZJ
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b1$$kFZJ
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166341$$aForschungszentrum Jülich$$b4$$kFZJ
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b10$$kFZJ
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b13$$kFZJ
000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b14$$kFZJ
000859332 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000859332 9141_ $$y2018
000859332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS PHOTONICS : 2017
000859332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859332 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859332 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859332 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859332 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS PHOTONICS : 2017
000859332 920__ $$lyes
000859332 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000859332 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000859332 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000859332 980__ $$ajournal
000859332 980__ $$aVDB
000859332 980__ $$aI:(DE-Juel1)PGI-9-20110106
000859332 980__ $$aI:(DE-82)080009_20140620
000859332 980__ $$aI:(DE-Juel1)PGI-10-20170113
000859332 980__ $$aUNRESTRICTED