000859332 001__ 859332 000859332 005__ 20210130000234.0 000859332 0247_ $$2doi$$a10.1021/acsphotonics.8b01116 000859332 0247_ $$2WOS$$aWOS:000451496500056 000859332 0247_ $$2altmetric$$aaltmetric:49936623 000859332 037__ $$aFZJ-2019-00200 000859332 082__ $$a530 000859332 1001_ $$0P:(DE-Juel1)161180$$aStange, Daniela$$b0$$eCorresponding author 000859332 245__ $$aGeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers 000859332 260__ $$aWashington, DC$$bACS$$c2018 000859332 3367_ $$2DRIVER$$aarticle 000859332 3367_ $$2DataCite$$aOutput Types/Journal article 000859332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547562946_15236 000859332 3367_ $$2BibTeX$$aARTICLE 000859332 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000859332 3367_ $$00$$2EndNote$$aJournal Article 000859332 520__ $$aGeSn and SiGeSn are promising materials for the fabrication of a group IV laser source offering a number of design options from bulk to heterostructures and quantum wells. Here, we investigate GeSn/SiGeSn multi quantum wells using the optically pumped laser effect. Three complex heterostructures were grown on top of 200 nm thick strain-relaxed Ge0.9Sn0.1 buffers. The lasing is investigated in terms of threshold and maximal lasing operation temperature by comparing multiple quantum well to double heterostructure samples. Pumping under two different wavelengths of 1064 and 1550 nm yields comparable lasing thresholds. The design with multi quantum wells reduces the lasing threshold to 40 ± 5 kW/cm2 at 20 K, almost 10 times lower than for bulk structures. Moreover, 20 K higher maximal lasing temperatures were found for lower energy pumping of 1550 nm. 000859332 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000859332 588__ $$aDataset connected to CrossRef 000859332 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b1 000859332 7001_ $$0P:(DE-HGF)0$$aZabel, Thomas$$b2 000859332 7001_ $$0P:(DE-HGF)0$$aArmand-Pilon, Francesco$$b3 000859332 7001_ $$0P:(DE-Juel1)166341$$aRainko, Denis$$b4$$ufzj 000859332 7001_ $$0P:(DE-HGF)0$$aMarzban, Bahareh$$b5 000859332 7001_ $$0P:(DE-HGF)0$$aZaumseil, Peter$$b6 000859332 7001_ $$0P:(DE-HGF)0$$aHartmann, Jean-Michel$$b7 000859332 7001_ $$0P:(DE-HGF)0$$aIkonic, Zoran$$b8 000859332 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b9 000859332 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b10$$ufzj 000859332 7001_ $$0P:(DE-HGF)0$$aSigg, Hans$$b11 000859332 7001_ $$0P:(DE-HGF)0$$aWitzens, Jeremy$$b12 000859332 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b13$$ufzj 000859332 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b14 000859332 773__ $$0PERI:(DE-600)2745489-7$$a10.1021/acsphotonics.8b01116$$gVol. 5, no. 11, p. 4628 - 4636$$n11$$p4628 - 4636$$tACS photonics$$v5$$x2330-4022$$y2018 000859332 8564_ $$uhttps://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf$$yRestricted 000859332 8564_ $$uhttps://juser.fz-juelich.de/record/859332/files/acsphotonics.8b01116.pdf?subformat=pdfa$$xpdfa$$yRestricted 000859332 909CO $$ooai:juser.fz-juelich.de:859332$$pVDB 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161180$$aForschungszentrum Jülich$$b0$$kFZJ 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b1$$kFZJ 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166341$$aForschungszentrum Jülich$$b4$$kFZJ 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b10$$kFZJ 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b13$$kFZJ 000859332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b14$$kFZJ 000859332 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000859332 9141_ $$y2018 000859332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS PHOTONICS : 2017 000859332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000859332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000859332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000859332 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000859332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000859332 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000859332 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000859332 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS PHOTONICS : 2017 000859332 920__ $$lyes 000859332 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0 000859332 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 000859332 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2 000859332 980__ $$ajournal 000859332 980__ $$aVDB 000859332 980__ $$aI:(DE-Juel1)PGI-9-20110106 000859332 980__ $$aI:(DE-82)080009_20140620 000859332 980__ $$aI:(DE-Juel1)PGI-10-20170113 000859332 980__ $$aUNRESTRICTED