000859902 001__ 859902
000859902 005__ 20240711101543.0
000859902 0247_ $$2doi$$a10.1016/j.memsci.2019.01.026
000859902 0247_ $$2ISSN$$a0376-7388
000859902 0247_ $$2ISSN$$a1873-3123
000859902 0247_ $$2Handle$$a2128/21546
000859902 0247_ $$2WOS$$aWOS:000459156900002
000859902 037__ $$aFZJ-2019-00718
000859902 082__ $$a570
000859902 1001_ $$0P:(DE-Juel1)130516$$aBabcock, E.$$b0$$eCorresponding author
000859902 245__ $$aUsing neutron methods SANS and PGAA to study evolution of structure and composition of Alkali-doped Polybenzimidazole membranes
000859902 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000859902 3367_ $$2DRIVER$$aarticle
000859902 3367_ $$2DataCite$$aOutput Types/Journal article
000859902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551195015_12770
000859902 3367_ $$2BibTeX$$aARTICLE
000859902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000859902 3367_ $$00$$2EndNote$$aJournal Article
000859902 520__ $$aPotassium hydroxide (KOH) doped polybenzimidazole (PBI) membranes are investigated as compelling candidates for water electrolysis applications, drastically reducing the ohmic losses in contrast to thick ZrO2 based diaphragms. Using small angle neutron scattering (SANS) we have found that the structure of the (KOH doped) PBI changes with doping time on a minute time scale, and that the development of the structure is highly dependent on the KOH concentration. This data is correlated with macroscopic measurements of membrane swelling resulting from the doping process which also occurs on a minute time scale. Then, using prompt gamma activation analysis (PGAA) to follow the changes in time of the chemical composition, we have found that the K concentration of these samples only increases slightly with doping times after a very rapid initial uptake, reaching a saturation value that is relatively independent of KOH concentration for long doping times of up to 24 h. However measurements of similarly doped samples show increases in ion-conductivity of nearly 3 fold, and resistivity reductions of over 2 fold on the same time scales. These measurements prove that PGAA is a sensitive method to follow changes in the chemical compositions during doping, while SANS can give information on the sub-micro structural changes of polymer electrolyte membranes. Since these methods can be correlated with ex-situ measurements of composition, resistance, ion-conductivity and macro-structure, the combined use of PGAA and SANS provides a promising means for in-operando study in order to elucidate changes in membrane performance due to electrochemical cycling, as well as to help characterize and optimize doping parameters though in-situ doping measurements, by enabling real-time study of such membrane systems.
000859902 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000859902 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x1
000859902 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000859902 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x3
000859902 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000859902 588__ $$aDataset connected to CrossRef
000859902 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000859902 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000859902 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000859902 693__ $$0EXP:(DE-MLZ)PGAA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PGAA-20140101$$6EXP:(DE-MLZ)NL4b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePGAA: Prompt gamma activation analysis$$fNL4b$$x0
000859902 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x1
000859902 7001_ $$0P:(DE-Juel1)145431$$aSzekely, Noemi$$b1
000859902 7001_ $$0P:(DE-HGF)0$$aKonovalova, Anastasii$$b2
000859902 7001_ $$0P:(DE-Juel1)165816$$aLin, Y.$$b3
000859902 7001_ $$0P:(DE-Juel1)130507$$aAppavou, M.-S.$$b4
000859902 7001_ $$0P:(DE-Juel1)166565$$aMangiapia, G.$$b5
000859902 7001_ $$0P:(DE-HGF)0$$aRevay, Zsolt$$b6
000859902 7001_ $$0P:(DE-HGF)0$$aStieghorst, Christian$$b7
000859902 7001_ $$0P:(DE-Juel1)130718$$aHolderer, O.$$b8
000859902 7001_ $$00000-0003-2330-953X$$aHenkensmeier, D.$$b9
000859902 7001_ $$0P:(DE-Juel1)129883$$aLehnert, W.$$b10
000859902 7001_ $$0P:(DE-Juel1)145276$$aCarmo, M.$$b11
000859902 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2019.01.026$$gp. S0376738818324207$$p12-19$$tJournal of membrane science$$v577$$x0376-7388$$y2019
000859902 8564_ $$uhttps://juser.fz-juelich.de/record/859902/files/W1489115.pdf
000859902 8564_ $$uhttps://juser.fz-juelich.de/record/859902/files/1-s2.0-S0376738818324207-main.pdf$$yOpenAccess
000859902 8564_ $$uhttps://juser.fz-juelich.de/record/859902/files/W1489115.pdf?subformat=pdfa$$xpdfa
000859902 8564_ $$uhttps://juser.fz-juelich.de/record/859902/files/1-s2.0-S0376738818324207-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000859902 8767_ $$8W1489115$$92019-01-24$$d2019-01-24$$eHybrid-OA$$jZahlung erfolgt
000859902 909CO $$ooai:juser.fz-juelich.de:859902$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC$$popen_access$$popenaire
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130516$$aForschungszentrum Jülich$$b0$$kFZJ
000859902 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165816$$aForschungszentrum Jülich$$b3$$kFZJ
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b4$$kFZJ
000859902 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-HGF)0$$aHeinz Maier-Leibnitz Zentrum$$b6$$kMLZ
000859902 9101_ $$0I:(DE-588b)4597118-3$$6P:(DE-HGF)0$$aHeinz Maier-Leibnitz Zentrum$$b7$$kMLZ
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b8$$kFZJ
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b10$$kFZJ
000859902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b11$$kFZJ
000859902 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000859902 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000859902 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000859902 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x3
000859902 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000859902 9141_ $$y2019
000859902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000859902 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000859902 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000859902 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000859902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE SCI : 2017
000859902 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MEMBRANE SCI : 2017
000859902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000859902 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000859902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000859902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000859902 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000859902 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000859902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000859902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000859902 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000859902 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000859902 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000859902 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000859902 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x4
000859902 9801_ $$aAPC
000859902 9801_ $$aFullTexts
000859902 980__ $$ajournal
000859902 980__ $$aVDB
000859902 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000859902 980__ $$aI:(DE-Juel1)IEK-3-20101013
000859902 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000859902 980__ $$aI:(DE-588b)4597118-3
000859902 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000859902 980__ $$aAPC
000859902 980__ $$aUNRESTRICTED
000859902 981__ $$aI:(DE-Juel1)ICE-2-20101013