000860102 001__ 860102
000860102 005__ 20210130000440.0
000860102 0247_ $$2doi$$a10.1109/TNANO.2018.2867904
000860102 0247_ $$2ISSN$$a1536-125X
000860102 0247_ $$2ISSN$$a1941-0085
000860102 0247_ $$2WOS$$aWOS:000449979300017
000860102 037__ $$aFZJ-2019-00888
000860102 082__ $$a530
000860102 1001_ $$00000-0002-3704-8150$$aAbbaspour, Elhameh$$b0
000860102 245__ $$aKMC Simulation of the Electroforming, Set and Reset Processes in Redox-Based Resistive Switching Devices
000860102 260__ $$aNew York, NY$$bIEEE$$c2018
000860102 3367_ $$2DRIVER$$aarticle
000860102 3367_ $$2DataCite$$aOutput Types/Journal article
000860102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548767788_11949
000860102 3367_ $$2BibTeX$$aARTICLE
000860102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860102 3367_ $$00$$2EndNote$$aJournal Article
000860102 520__ $$aThis paper presents a physical model to investigate the electroforming, set and reset processes in Redox-based resistive switching RAM based on the valence change mechanism. The model uses a kinetic Monte Carlo code in a three-dimensional structure. It is based on the formation and dissolution of an oxygen-deficient/oxygen-vacancy-rich filament in the resistive switching oxide material. In contrast to other proposed models, oxygen vacancies only form at the anode/oxide boundary due to an oxygen exchange reaction. The generated oxygen vacancies are mobile and move away from the interface allowing for further oxygen vacancy generation. The model includes electric field, temperature and temperature gradient as driving forces for the electroforming, set and reset transition of these devices. It is demonstrated that this alternative model could successfully reproduce I−V characteristics observed in experimental results.
000860102 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000860102 588__ $$aDataset connected to CrossRef
000860102 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b1
000860102 7001_ $$0P:(DE-Juel1)165704$$aHardtdegen, Alexander$$b2
000860102 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b3
000860102 7001_ $$0P:(DE-HGF)0$$aJungemann, Christoph$$b4
000860102 773__ $$0PERI:(DE-600)2082654-0$$a10.1109/TNANO.2018.2867904$$gVol. 17, no. 6, p. 1181 - 1188$$n6$$p1181 - 1188$$tIEEE transactions on nanotechnology$$v17$$x1941-0085$$y2018
000860102 909CO $$ooai:juser.fz-juelich.de:860102$$pVDB
000860102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b1$$kFZJ
000860102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165704$$aForschungszentrum Jülich$$b2$$kFZJ
000860102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b3$$kFZJ
000860102 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000860102 9141_ $$y2018
000860102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T NANOTECHNOL : 2017
000860102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860102 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860102 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860102 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860102 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860102 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000860102 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000860102 980__ $$ajournal
000860102 980__ $$aVDB
000860102 980__ $$aI:(DE-Juel1)PGI-7-20110106
000860102 980__ $$aI:(DE-82)080009_20140620
000860102 980__ $$aUNRESTRICTED