001     860102
005     20210130000440.0
024 7 _ |a 10.1109/TNANO.2018.2867904
|2 doi
024 7 _ |a 1536-125X
|2 ISSN
024 7 _ |a 1941-0085
|2 ISSN
024 7 _ |a WOS:000449979300017
|2 WOS
037 _ _ |a FZJ-2019-00888
082 _ _ |a 530
100 1 _ |a Abbaspour, Elhameh
|0 0000-0002-3704-8150
|b 0
245 _ _ |a KMC Simulation of the Electroforming, Set and Reset Processes in Redox-Based Resistive Switching Devices
260 _ _ |a New York, NY
|c 2018
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548767788_11949
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents a physical model to investigate the electroforming, set and reset processes in Redox-based resistive switching RAM based on the valence change mechanism. The model uses a kinetic Monte Carlo code in a three-dimensional structure. It is based on the formation and dissolution of an oxygen-deficient/oxygen-vacancy-rich filament in the resistive switching oxide material. In contrast to other proposed models, oxygen vacancies only form at the anode/oxide boundary due to an oxygen exchange reaction. The generated oxygen vacancies are mobile and move away from the interface allowing for further oxygen vacancy generation. The model includes electric field, temperature and temperature gradient as driving forces for the electroforming, set and reset transition of these devices. It is demonstrated that this alternative model could successfully reproduce I−V characteristics observed in experimental results.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 1
700 1 _ |a Hardtdegen, Alexander
|0 P:(DE-Juel1)165704
|b 2
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 3
700 1 _ |a Jungemann, Christoph
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1109/TNANO.2018.2867904
|g Vol. 17, no. 6, p. 1181 - 1188
|0 PERI:(DE-600)2082654-0
|n 6
|p 1181 - 1188
|t IEEE transactions on nanotechnology
|v 17
|y 2018
|x 1941-0085
909 C O |o oai:juser.fz-juelich.de:860102
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130717
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T NANOTECHNOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21