Journal Article FZJ-2019-01064

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enhanced bending-tuned magnetic properties in epitaxial cobalt ferrite nanopillar arrays on flexible substrates

 ;  ;  ;  ;  ;  ;  ;

2018
RSC Publ. Cambridge

Materials Horizons 5(2), 230 - 239 () [10.1039/C7MH00939A]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Herein, large-scale epitaxial (111) CoFe2O4 nanopillar arrays with an average nanopillar diameter of ∼40–60 nm and thicknesses of 26–700 nm have been obtained on flexible fluorophlogopite substrates by chemically etching the vertically aligned self-assembled CoFe2O4:MgO nanocomposite thin films. The chemical etching process has not affected the crystalline quality of the CoFe2O4 phase, but results in volume shrinkage through the removal of the surrounding MgO phase. Compared with the planar CoFe2O4 films, the nanopillar arrays show sharply declined coercivity and enhanced saturation magnetization. Even the thinnest nanoisland-shaped arrays (∼26 nm) retain a relatively high saturation magnetization (∼90 emu cc−1), nonzero coercivity (∼250 Oe), and remanence (∼30 emu cc−1), which are promising for the requirements of weak ferromagnetism in flexible devices. With an increase in the bending radius, a strong and monotonous increase in saturation/remanent magnetization has been found in the nanopillar arrays. This reveals that the bending-induced shape anisotropy as well as the intrinsic magnetocrystalline anisotropy mainly dominate the tunable magnetic properties in the CoFe2O4 nanopillar arrays. With strong bending, the increment of remanent magnetization in the nanopillar arrays can be as high as 98%, exhibiting the huge potential of these nanopillar arrays in future applications such as in bending sensors and related devices.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2018
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 10 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database

 Record created 2019-01-31, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)