Journal Article FZJ-2019-01065

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Flexible Lithium Ferrite Nanopillar Arrays for Bending Stable Microwave Magnetism

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Soc. Washington, DC

ACS applied materials & interfaces 10(46), 39422 - 39427 () [10.1021/acsami.8b12954]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Recent development in magnetic nanostructures has promoted flexible electronics into the application of integrated devices. However, the magnetic properties of flexible devices strongly depend on the bending states. In order to realize the design of new flexible devices driven by an external field, the first step is to make the magnetic properties insensitive to the bending. Herein, a series of LiFe5O8 nanopillar arrays were fabricated, whose microwave magnetic properties can be modulated by tuning the nanostructure. This work demonstrates that nanostructure engineering is useful to control the bending sensitivity of microwave magnetism and further design stable flexible devices.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2018
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database

 Record created 2019-01-31, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)