000860300 001__ 860300
000860300 005__ 20200914102037.0
000860300 0247_ $$2doi$$a10.1016/S0010-4655(02)00455-1
000860300 0247_ $$2ISSN$$a0010-4655
000860300 0247_ $$2ISSN$$a1386-9485
000860300 0247_ $$2ISSN$$a1879-2944
000860300 037__ $$aFZJ-2019-01075
000860300 082__ $$a530
000860300 1001_ $$0P:(DE-HGF)0$$avan den Eshof, J.$$b0
000860300 245__ $$aNumerical methods for the QCDd overlap operator. I. Sign-function and error bounds
000860300 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2002
000860300 3367_ $$2DRIVER$$aarticle
000860300 3367_ $$2DataCite$$aOutput Types/Journal article
000860300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600071603_28826
000860300 3367_ $$2BibTeX$$aARTICLE
000860300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860300 3367_ $$00$$2EndNote$$aJournal Article
000860300 520__ $$aThe numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix–vector product that involves the sign function of the Hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion methods. Our goal is two-fold: we give realistic comparisons between known methods together with novel approaches and we present error bounds which allow to guarantee a given accuracy when terminating the Lanczos method and the multishift-CG solver, applied within the partial fraction expansion methods.
000860300 588__ $$aDataset connected to CrossRef
000860300 7001_ $$0P:(DE-HGF)0$$aFrommer, A.$$b1
000860300 7001_ $$0P:(DE-Juel1)132179$$aLippert, Th.$$b2$$ufzj
000860300 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b3
000860300 7001_ $$0P:(DE-HGF)0$$avan der Vorst, H. A.$$b4
000860300 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/S0010-4655(02)00455-1$$gVol. 146, no. 2, p. 203 - 224$$n2$$p203 - 224$$tComputer physics communications$$v146$$x0010-4655$$y2002
000860300 909CO $$ooai:juser.fz-juelich.de:860300$$pextern4vita
000860300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b2$$kFZJ
000860300 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000860300 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2017
000860300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860300 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860300 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860300 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860300 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860300 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860300 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860300 9801_ $$aEXTERN4VITA
000860300 980__ $$ajournal
000860300 980__ $$aEDITORS
000860300 980__ $$aI:(DE-Juel1)JSC-20090406
000860300 980__ $$aI:(DE-Juel1)NIC-20090406