Home > External Publications > Vita Publications > Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds > print |
001 | 860300 | ||
005 | 20200914102037.0 | ||
024 | 7 | _ | |a 10.1016/S0010-4655(02)00455-1 |2 doi |
024 | 7 | _ | |a 0010-4655 |2 ISSN |
024 | 7 | _ | |a 1386-9485 |2 ISSN |
024 | 7 | _ | |a 1879-2944 |2 ISSN |
037 | _ | _ | |a FZJ-2019-01075 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a van den Eshof, J. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds |
260 | _ | _ | |a Amsterdam |c 2002 |b North Holland Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600071603_28826 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The numerical and computational aspects of the overlap formalism in lattice quantum chromodynamics are extremely demanding due to a matrix–vector product that involves the sign function of the Hermitian Wilson matrix. In this paper we investigate several methods to compute the product of the matrix sign-function with a vector, in particular Lanczos based methods and partial fraction expansion methods. Our goal is two-fold: we give realistic comparisons between known methods together with novel approaches and we present error bounds which allow to guarantee a given accuracy when terminating the Lanczos method and the multishift-CG solver, applied within the partial fraction expansion methods. |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Frommer, A. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Lippert, Th. |0 P:(DE-Juel1)132179 |b 2 |u fzj |
700 | 1 | _ | |a Schilling, K. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a van der Vorst, H. A. |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1016/S0010-4655(02)00455-1 |g Vol. 146, no. 2, p. 203 - 224 |0 PERI:(DE-600)1466511-6 |n 2 |p 203 - 224 |t Computer physics communications |v 146 |y 2002 |x 0010-4655 |
909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:860300 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132179 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-HGF)0 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b COMPUT PHYS COMMUN : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
980 | 1 | _ | |a EXTERN4VITA |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|