000860308 001__ 860308
000860308 005__ 20200914100552.0
000860308 0247_ $$2doi$$a10.1016/S0167-8191(99)00055-1
000860308 0247_ $$2ISSN$$a0167-8191
000860308 0247_ $$2ISSN$$a1872-7336
000860308 037__ $$aFZJ-2019-01083
000860308 082__ $$a620
000860308 1001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b0$$ufzj
000860308 245__ $$aParallel SSOR preconditioning for lattice QCD
000860308 260__ $$aAmsterdam [u.a.]$$bNorth-Holland, Elsevier Science$$c1999
000860308 3367_ $$2DRIVER$$aarticle
000860308 3367_ $$2DataCite$$aOutput Types/Journal article
000860308 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600070730_27411
000860308 3367_ $$2BibTeX$$aARTICLE
000860308 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860308 3367_ $$00$$2EndNote$$aJournal Article
000860308 520__ $$aThe locally lexicographic symmetric successive overrelaxation algorithm (ll-SSOR) is the most effective parallel preconditioner known for iterative solvers used in lattice gauge theory. After reviewing the basic properties of ll-SSOR, the focus of this contribution is put on its parallel aspects: the administrative overhead of the parallel implementation of ll-SSOR, which is due to many conditional operations, decreases its efficiency by a factor of up to one third. A simple generalization of the algorithm is proposed that allows the application of the lexicographic ordering along specified axes, while along the other dimensions odd–even preconditioning is used. In this way one can tune the preconditioner towards optimal performance by balancing ll-SSOR effectivity and administrative overhead.
000860308 588__ $$aDataset connected to CrossRef
000860308 773__ $$0PERI:(DE-600)1466340-5$$a10.1016/S0167-8191(99)00055-1$$gVol. 25, no. 10-11, p. 1357 - 1370$$n10-11$$p1357 - 1370$$tParallel computing$$v25$$x0167-8191$$y1999
000860308 909CO $$ooai:juser.fz-juelich.de:860308$$pextern4vita
000860308 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ
000860308 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPARALLEL COMPUT : 2017
000860308 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860308 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860308 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860308 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860308 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860308 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860308 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860308 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860308 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860308 9801_ $$aEXTERN4VITA
000860308 980__ $$ajournal
000860308 980__ $$aEDITORS
000860308 980__ $$aI:(DE-Juel1)JSC-20090406
000860308 980__ $$aI:(DE-Juel1)NIC-20090406