000860309 001__ 860309
000860309 005__ 20200914100627.0
000860309 0247_ $$2doi$$a10.1016/S0167-8191(99)00023-X
000860309 0247_ $$2ISSN$$a0167-8191
000860309 0247_ $$2ISSN$$a1872-7336
000860309 037__ $$aFZJ-2019-01084
000860309 082__ $$a620
000860309 1001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b0$$ufzj
000860309 245__ $$aHyper-systolic algorithms for N-body computations and parallel level-3 BLAS libraries
000860309 260__ $$aAmsterdam [u.a.]$$bNorth-Holland, Elsevier Science$$c1999
000860309 3367_ $$2DRIVER$$aarticle
000860309 3367_ $$2DataCite$$aOutput Types/Journal article
000860309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600070767_30204
000860309 3367_ $$2BibTeX$$aARTICLE
000860309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860309 3367_ $$00$$2EndNote$$aJournal Article
000860309 520__ $$aHyper-systolic algorithms represent a new class of parallel computing structures. Because of their regular communication and compute patterns they are well suited for implementation on most parallel architectures, in particular, high performance SIMD machines can benefit considerably. After a short explanation of the concept of hyper-systolic algorithms, their application to N-body computations and distributed matrix multiplication is discussed. Results from real implementations are presented.
000860309 588__ $$aDataset connected to CrossRef
000860309 773__ $$0PERI:(DE-600)1466340-5$$a10.1016/S0167-8191(99)00023-X$$gVol. 25, no. 7, p. 877 - 891$$n7$$p877 - 891$$tParallel computing$$v25$$x0167-8191$$y1999
000860309 909CO $$ooai:juser.fz-juelich.de:860309$$pextern4vita
000860309 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ
000860309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPARALLEL COMPUT : 2017
000860309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860309 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860309 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860309 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860309 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860309 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860309 9801_ $$aEXTERN4VITA
000860309 980__ $$ajournal
000860309 980__ $$aEDITORS
000860309 980__ $$aI:(DE-Juel1)JSC-20090406
000860309 980__ $$aI:(DE-Juel1)NIC-20090406