000860331 001__ 860331
000860331 005__ 20200914093757.0
000860331 0247_ $$2doi$$a10.1142/S0129183193000185
000860331 0247_ $$2ISSN$$a0129-1831
000860331 0247_ $$2ISSN$$a1793-6586
000860331 037__ $$aFZJ-2019-01106
000860331 082__ $$a530
000860331 1001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b0$$ufzj
000860331 245__ $$aLattice quantum electrodynamics near the phase transition
000860331 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1993
000860331 3367_ $$2DRIVER$$aarticle
000860331 3367_ $$2DataCite$$aOutput Types/Journal article
000860331 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069052_27411
000860331 3367_ $$2BibTeX$$aARTICLE
000860331 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860331 3367_ $$00$$2EndNote$$aJournal Article
000860331 520__ $$aNumerical simulations of quantum electrodynamics near the phase transition suffer from an extreme slowing down on large lattices. The two leading terms of the decaying autocorrelation function can be attributed to the influence of first-order phase transition effects, called supercritical slowing down, and second-order phase transition effects, called critical slowing down, respectively. We show that we can bypass supercritical slowing down using a conventional local updating algorithm based on a phenomenological weight ratio fixing method.As for critical slowing down, we apply a new global multi-scale updating algorithm which removes critical slowing down completely. We compare the structure of the local vs. the global algorithm as well as their implementation on the Connection Machine CM-2, analyze their computational complexity and present actual performance measurements.
000860331 588__ $$aDataset connected to CrossRef
000860331 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183193000185$$gVol. 04, no. 01, p. 163 - 179$$n01$$p163 - 179$$tInternational journal of modern physics / C Computational physics and physical computation C$$v04$$x1793-6586$$y1993
000860331 909CO $$ooai:juser.fz-juelich.de:860331$$pextern4vita
000860331 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ
000860331 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017
000860331 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860331 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860331 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860331 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860331 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860331 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860331 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860331 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860331 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860331 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860331 9801_ $$aEXTERN4VITA
000860331 980__ $$ajournal
000860331 980__ $$aEDITORS
000860331 980__ $$aI:(DE-Juel1)JSC-20090406
000860331 980__ $$aI:(DE-Juel1)NIC-20090406