001     860331
005     20200914093757.0
024 7 _ |a 10.1142/S0129183193000185
|2 doi
024 7 _ |a 0129-1831
|2 ISSN
024 7 _ |a 1793-6586
|2 ISSN
037 _ _ |a FZJ-2019-01106
082 _ _ |a 530
100 1 _ |a Lippert, Thomas
|0 P:(DE-Juel1)132179
|b 0
|u fzj
245 _ _ |a Lattice quantum electrodynamics near the phase transition
260 _ _ |a Singapore [u.a.]
|c 1993
|b World Scientific
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600069052_27411
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Numerical simulations of quantum electrodynamics near the phase transition suffer from an extreme slowing down on large lattices. The two leading terms of the decaying autocorrelation function can be attributed to the influence of first-order phase transition effects, called supercritical slowing down, and second-order phase transition effects, called critical slowing down, respectively. We show that we can bypass supercritical slowing down using a conventional local updating algorithm based on a phenomenological weight ratio fixing method.As for critical slowing down, we apply a new global multi-scale updating algorithm which removes critical slowing down completely. We compare the structure of the local vs. the global algorithm as well as their implementation on the Connection Machine CM-2, analyze their computational complexity and present actual performance measurements.
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1142/S0129183193000185
|g Vol. 04, no. 01, p. 163 - 179
|0 PERI:(DE-600)2006526-7
|n 01
|p 163 - 179
|t International journal of modern physics / C Computational physics and physical computation C
|v 04
|y 1993
|x 1793-6586
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:860331
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132179
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOD PHYS C : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21