Home > External Publications > Vita Publications > Lattice quantum electrodynamics near the phase transition > print |
001 | 860331 | ||
005 | 20200914093757.0 | ||
024 | 7 | _ | |a 10.1142/S0129183193000185 |2 doi |
024 | 7 | _ | |a 0129-1831 |2 ISSN |
024 | 7 | _ | |a 1793-6586 |2 ISSN |
037 | _ | _ | |a FZJ-2019-01106 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Lippert, Thomas |0 P:(DE-Juel1)132179 |b 0 |u fzj |
245 | _ | _ | |a Lattice quantum electrodynamics near the phase transition |
260 | _ | _ | |a Singapore [u.a.] |c 1993 |b World Scientific |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600069052_27411 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Numerical simulations of quantum electrodynamics near the phase transition suffer from an extreme slowing down on large lattices. The two leading terms of the decaying autocorrelation function can be attributed to the influence of first-order phase transition effects, called supercritical slowing down, and second-order phase transition effects, called critical slowing down, respectively. We show that we can bypass supercritical slowing down using a conventional local updating algorithm based on a phenomenological weight ratio fixing method.As for critical slowing down, we apply a new global multi-scale updating algorithm which removes critical slowing down completely. We compare the structure of the local vs. the global algorithm as well as their implementation on the Connection Machine CM-2, analyze their computational complexity and present actual performance measurements. |
588 | _ | _ | |a Dataset connected to CrossRef |
773 | _ | _ | |a 10.1142/S0129183193000185 |g Vol. 04, no. 01, p. 163 - 179 |0 PERI:(DE-600)2006526-7 |n 01 |p 163 - 179 |t International journal of modern physics / C Computational physics and physical computation C |v 04 |y 1993 |x 1793-6586 |
909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:860331 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)132179 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J MOD PHYS C : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
980 | 1 | _ | |a EXTERN4VITA |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|