000860333 001__ 860333 000860333 005__ 20200914094829.0 000860333 0247_ $$2doi$$a10.1142/S012918319700117X 000860333 0247_ $$2ISSN$$a0129-1831 000860333 0247_ $$2ISSN$$a1793-6586 000860333 037__ $$aFZJ-2019-01108 000860333 082__ $$a530 000860333 1001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b0$$ufzj 000860333 245__ $$aFFT for the APE Parallel Computer 000860333 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1997 000860333 3367_ $$2DRIVER$$aarticle 000860333 3367_ $$2DataCite$$aOutput Types/Journal article 000860333 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069681_30204 000860333 3367_ $$2BibTeX$$aARTICLE 000860333 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000860333 3367_ $$00$$2EndNote$$aJournal Article 000860333 520__ $$aWe present a parallel FFT algorithm for SIMD systems following the "Transpose Algorithm" approach. The method is based on the assignment of the data field onto a one-dimensional ring of systolic cells. The systolic array can be universally mapped onto any parallel system. In particular for systems with next-neighbor connectivity our method has the potential to improve the efficiency of matrix transposition by use of hyper-systolic communication. We have realized a scalable parallel FFT on the APE100/Quadrics massively parallel computer, where our implementation is part of a two-dimensional hydrodynamics code for turbulence studies. 000860333 588__ $$aDataset connected to CrossRef 000860333 7001_ $$0P:(DE-HGF)0$$aSchilling, Klaus$$b1 000860333 7001_ $$0P:(DE-HGF)0$$aTrentmann, Sven$$b2 000860333 7001_ $$0P:(DE-HGF)0$$aToschi, Federico$$b3 000860333 7001_ $$0P:(DE-HGF)0$$aTripiccione, Raffaele$$b4 000860333 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S012918319700117X$$gVol. 08, no. 06, p. 1317 - 1334$$n06$$p1317 - 1334$$tInternational journal of modern physics / C Computational physics and physical computation C$$v08$$x1793-6586$$y1997 000860333 909CO $$ooai:juser.fz-juelich.de:860333$$pextern4vita 000860333 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ 000860333 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017 000860333 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000860333 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000860333 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000860333 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000860333 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000860333 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000860333 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000860333 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000860333 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000860333 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000860333 9801_ $$aEXTERN4VITA 000860333 980__ $$ajournal 000860333 980__ $$aEDITORS 000860333 980__ $$aI:(DE-Juel1)JSC-20090406 000860333 980__ $$aI:(DE-Juel1)NIC-20090406