001 | 860333 | ||
005 | 20200914094829.0 | ||
024 | 7 | _ | |a 10.1142/S012918319700117X |2 doi |
024 | 7 | _ | |a 0129-1831 |2 ISSN |
024 | 7 | _ | |a 1793-6586 |2 ISSN |
037 | _ | _ | |a FZJ-2019-01108 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Lippert, Thomas |0 P:(DE-Juel1)132179 |b 0 |u fzj |
245 | _ | _ | |a FFT for the APE Parallel Computer |
260 | _ | _ | |a Singapore [u.a.] |c 1997 |b World Scientific |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600069681_30204 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We present a parallel FFT algorithm for SIMD systems following the "Transpose Algorithm" approach. The method is based on the assignment of the data field onto a one-dimensional ring of systolic cells. The systolic array can be universally mapped onto any parallel system. In particular for systems with next-neighbor connectivity our method has the potential to improve the efficiency of matrix transposition by use of hyper-systolic communication. We have realized a scalable parallel FFT on the APE100/Quadrics massively parallel computer, where our implementation is part of a two-dimensional hydrodynamics code for turbulence studies. |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schilling, Klaus |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Trentmann, Sven |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Toschi, Federico |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tripiccione, Raffaele |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1142/S012918319700117X |g Vol. 08, no. 06, p. 1317 - 1334 |0 PERI:(DE-600)2006526-7 |n 06 |p 1317 - 1334 |t International journal of modern physics / C Computational physics and physical computation C |v 08 |y 1997 |x 1793-6586 |
909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:860333 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)132179 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J MOD PHYS C : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
980 | 1 | _ | |a EXTERN4VITA |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|