000860334 001__ 860334
000860334 005__ 20200914094501.0
000860334 0247_ $$2doi$$a10.1142/S0129183196000430
000860334 0247_ $$2ISSN$$a0129-1831
000860334 0247_ $$2ISSN$$a1793-6586
000860334 037__ $$aFZJ-2019-01109
000860334 082__ $$a530
000860334 1001_ $$0P:(DE-Juel1)132179$$aLIPPERT, THOMAS$$b0$$ufzj
000860334 245__ $$aHyper-systolic processing on APE100/Quadrics: n^2-loop computations
000860334 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1996
000860334 3367_ $$2DRIVER$$aarticle
000860334 3367_ $$2DataCite$$aOutput Types/Journal article
000860334 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069458_30204
000860334 3367_ $$2BibTeX$$aARTICLE
000860334 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860334 3367_ $$00$$2EndNote$$aJournal Article
000860334 520__ $$aWe investigate the performance gains from hyper-systolic implementations of n2-loop problems on the massively parallel computer Quadrics, exploiting its three-dimensional interprocessor connectivity. For illustration we study the communication aspects of an exact molecular dynamics simulation of n particles with Coulomb (or gravitational) interactions.We compare the interprocessor communication costs of the standard-systolic and the hyper-systolic approaches for various granularities. We predict gain factors as large as three on the Q4 and eight on the QH4 and measure actual performances on these machine configurations. We conclude that it appears feasible to investigate the thermodynamics of a full gravitating n-body problem with O(16.000) particles using the new method on a QH4 system.
000860334 588__ $$aDataset connected to CrossRef
000860334 7001_ $$0P:(DE-HGF)0$$aRITZENHÖFER, GERO$$b1
000860334 7001_ $$0P:(DE-HGF)0$$aGLAESSNER, UWE$$b2
000860334 7001_ $$0P:(DE-HGF)0$$aHOEBER, HENNING$$b3
000860334 7001_ $$0P:(DE-Juel1)132266$$aSEYFRIED, ARMIN$$b4$$ufzj
000860334 7001_ $$0P:(DE-HGF)0$$aSCHILLING, KLAUS$$b5
000860334 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183196000430$$gVol. 07, no. 04, p. 485 - 501$$n04$$p485 - 501$$tInternational journal of modern physics / C Computational physics and physical computation C$$v07$$x1793-6586$$y1996
000860334 909CO $$ooai:juser.fz-juelich.de:860334$$pextern4vita
000860334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b0$$kFZJ
000860334 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132266$$aForschungszentrum Jülich$$b4$$kFZJ
000860334 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017
000860334 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860334 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860334 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860334 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860334 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860334 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860334 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860334 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860334 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860334 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860334 9801_ $$aEXTERN4VITA
000860334 980__ $$ajournal
000860334 980__ $$aEDITORS
000860334 980__ $$aI:(DE-Juel1)JSC-20090406
000860334 980__ $$aI:(DE-Juel1)IAS-7-20180321
000860334 980__ $$aI:(DE-Juel1)NIC-20090406