000860336 001__ 860336
000860336 005__ 20200914094034.0
000860336 0247_ $$2doi$$a10.1142/S012918319400115X
000860336 0247_ $$2ISSN$$a0129-1831
000860336 0247_ $$2ISSN$$a1793-6586
000860336 037__ $$aFZJ-2019-01111
000860336 082__ $$a530
000860336 1001_ $$0P:(DE-HGF)0$$aFROMMER, ANDREAS$$b0
000860336 245__ $$aAccelerating Wilson fermion matrix inversions by means of the stabilized biconjugate gradient algorithm
000860336 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c1994
000860336 3367_ $$2DRIVER$$aarticle
000860336 3367_ $$2DataCite$$aOutput Types/Journal article
000860336 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600069216_27503
000860336 3367_ $$2BibTeX$$aARTICLE
000860336 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860336 3367_ $$00$$2EndNote$$aJournal Article
000860336 520__ $$aThe stabilized biconjugate gradient algorithm BiCGStab recently presented by van der Vorst is applied to the inversion of the lattice fermion operator in the Wilson formulation of lattice Quantum Chromodynamics. Its computational efficiency is tested in a comparative study against the conjugate gradient and minimal residual methods.Both for quenched gauge configurations at β=6.0 and gauge configurations with dynamical fermions at β=5.4, we find BiCGStab to be superior to the other methods. BiCGStab turns out to be particularly useful in the chiral regime of small quark masses.
000860336 588__ $$aDataset connected to CrossRef
000860336 7001_ $$0P:(DE-HGF)0$$aHANNEMANN, VOLKER$$b1
000860336 7001_ $$0P:(DE-HGF)0$$aNÖCKEL, BERTOLD$$b2
000860336 7001_ $$0P:(DE-Juel1)132179$$aLIPPERT, THOMAS$$b3$$ufzj
000860336 7001_ $$0P:(DE-HGF)0$$aSCHILLING, KLAUS$$b4
000860336 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S012918319400115X$$gVol. 05, no. 06, p. 1073 - 1088$$n06$$p1073 - 1088$$tInternational journal of modern physics / C Computational physics and physical computation C$$v05$$x1793-6586$$y1994
000860336 909CO $$ooai:juser.fz-juelich.de:860336$$pextern4vita
000860336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b3$$kFZJ
000860336 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOD PHYS C : 2017
000860336 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860336 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860336 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860336 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860336 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860336 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860336 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860336 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860336 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860336 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860336 9801_ $$aEXTERN4VITA
000860336 980__ $$ajournal
000860336 980__ $$aEDITORS
000860336 980__ $$aI:(DE-Juel1)JSC-20090406
000860336 980__ $$aI:(DE-Juel1)NIC-20090406