001     860337
005     20200914094143.0
024 7 _ |a 10.1142/S0129183195000538
|2 doi
024 7 _ |a 0129-1831
|2 ISSN
024 7 _ |a 1793-6586
|2 ISSN
037 _ _ |a FZJ-2019-01112
082 _ _ |a 530
100 1 _ |a FROMMER, ANDREAS
|0 P:(DE-HGF)0
|b 0
245 _ _ |a MANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS
260 _ _ |a Singapore [u.a.]
|c 1995
|b World Scientific
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600069287_27503
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients).Based on the decomposition M/κ = 1/κ−D of the Wilson mass matrix, using QMR, one can carry out inversions on a whole trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage.Moreover, the symmetry γ5M = M†γ5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become — in the critical regime of small quark masses — competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a NÖCKEL, BERTOLD
|0 P:(DE-HGF)0
|b 1
700 1 _ |a GÜSKEN, STEPHAN
|0 P:(DE-HGF)0
|b 2
700 1 _ |a LIPPERT, THOMAS
|0 P:(DE-Juel1)132179
|b 3
|u fzj
700 1 _ |a SCHILLING, KLAUS
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1142/S0129183195000538
|g Vol. 06, no. 05, p. 627 - 638
|0 PERI:(DE-600)2006526-7
|n 05
|p 627 - 638
|t International journal of modern physics / C Computational physics and physical computation C
|v 06
|y 1995
|x 1793-6586
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:860337
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132179
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOD PHYS C : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21