Home > External Publications > Vita Publications > HOW TO COMPUTE GREEN'S FUNCTIONS FOR ENTIRE MASS TRAJECTORIES WITHIN KRYLOV SOLVERS > print |
001 | 860338 | ||
005 | 20200914094551.0 | ||
024 | 7 | _ | |a 10.1142/S0129183196000533 |2 doi |
024 | 7 | _ | |a 0129-1831 |2 ISSN |
024 | 7 | _ | |a 1793-6586 |2 ISSN |
037 | _ | _ | |a FZJ-2019-01113 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a GLÄSSNER, UWE |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a HOW TO COMPUTE GREEN'S FUNCTIONS FOR ENTIRE MASS TRAJECTORIES WITHIN KRYLOV SOLVERS |
260 | _ | _ | |a Singapore [u.a.] |c 1996 |b World Scientific |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600069510_27411 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The availability of efficient Krylov subspace solvers plays a vital role in the solution of a variety of numerical problems in computational science. Here we consider lattice field theory. We present a new general numerical method to compute many Green's functions for complex non-singular matrices within one iteration process. Our procedure applies to matrices of structure A = D − m, with m proportional to the unit matrix, and can be integrated within any Krylov subspace solver. We can compute the derivatives x(n) of the solution vector x with respect to the parameter m and construct the Taylor expansion of x around m. We demonstrate the advantages of our method using a minimal residual solver. Here the procedure requires one intermediate vector for each Green's function to compute. As real-life example, we determine a mass trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we can obtain Green's functions at all masses ≥ m at the price of one inversion at mass m. |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a GÜSKEN, STEPHAN |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a LIPPERT, THOMAS |0 P:(DE-Juel1)132179 |b 2 |u fzj |
700 | 1 | _ | |a RITZENHÖFER, GERO |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a SCHILLING, KLAUS |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a FROMMER, ANDREAS |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1142/S0129183196000533 |g Vol. 07, no. 05, p. 635 - 644 |0 PERI:(DE-600)2006526-7 |n 05 |p 635 - 644 |t International journal of modern physics / C Computational physics and physical computation C |v 07 |y 1996 |x 1793-6586 |
909 | C | O | |p extern4vita |o oai:juser.fz-juelich.de:860338 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132179 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J MOD PHYS C : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
980 | 1 | _ | |a EXTERN4VITA |
980 | _ | _ | |a journal |
980 | _ | _ | |a EDITORS |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|