001     860338
005     20200914094551.0
024 7 _ |a 10.1142/S0129183196000533
|2 doi
024 7 _ |a 0129-1831
|2 ISSN
024 7 _ |a 1793-6586
|2 ISSN
037 _ _ |a FZJ-2019-01113
082 _ _ |a 530
100 1 _ |a GLÄSSNER, UWE
|0 P:(DE-HGF)0
|b 0
245 _ _ |a HOW TO COMPUTE GREEN'S FUNCTIONS FOR ENTIRE MASS TRAJECTORIES WITHIN KRYLOV SOLVERS
260 _ _ |a Singapore [u.a.]
|c 1996
|b World Scientific
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600069510_27411
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The availability of efficient Krylov subspace solvers plays a vital role in the solution of a variety of numerical problems in computational science. Here we consider lattice field theory. We present a new general numerical method to compute many Green's functions for complex non-singular matrices within one iteration process. Our procedure applies to matrices of structure A = D − m, with m proportional to the unit matrix, and can be integrated within any Krylov subspace solver. We can compute the derivatives x(n) of the solution vector x with respect to the parameter m and construct the Taylor expansion of x around m. We demonstrate the advantages of our method using a minimal residual solver. Here the procedure requires one intermediate vector for each Green's function to compute. As real-life example, we determine a mass trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we can obtain Green's functions at all masses ≥ m at the price of one inversion at mass m.
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a GÜSKEN, STEPHAN
|0 P:(DE-HGF)0
|b 1
700 1 _ |a LIPPERT, THOMAS
|0 P:(DE-Juel1)132179
|b 2
|u fzj
700 1 _ |a RITZENHÖFER, GERO
|0 P:(DE-HGF)0
|b 3
700 1 _ |a SCHILLING, KLAUS
|0 P:(DE-HGF)0
|b 4
700 1 _ |a FROMMER, ANDREAS
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1142/S0129183196000533
|g Vol. 07, no. 05, p. 635 - 644
|0 PERI:(DE-600)2006526-7
|n 05
|p 635 - 644
|t International journal of modern physics / C Computational physics and physical computation C
|v 07
|y 1996
|x 1793-6586
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:860338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132179
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOD PHYS C : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21