Journal Article FZJ-2019-01113

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
HOW TO COMPUTE GREEN'S FUNCTIONS FOR ENTIRE MASS TRAJECTORIES WITHIN KRYLOV SOLVERS

 ;  ;  ;  ;  ;

1996
World Scientific Singapore [u.a.]

International journal of modern physics / C Computational physics and physical computation C 07(05), 635 - 644 () [10.1142/S0129183196000533]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: The availability of efficient Krylov subspace solvers plays a vital role in the solution of a variety of numerical problems in computational science. Here we consider lattice field theory. We present a new general numerical method to compute many Green's functions for complex non-singular matrices within one iteration process. Our procedure applies to matrices of structure A = D − m, with m proportional to the unit matrix, and can be integrated within any Krylov subspace solver. We can compute the derivatives x(n) of the solution vector x with respect to the parameter m and construct the Taylor expansion of x around m. We demonstrate the advantages of our method using a minimal residual solver. Here the procedure requires one intermediate vector for each Green's function to compute. As real-life example, we determine a mass trajectory of the Wilson fermion matrix for lattice QCD. Here we find that we can obtain Green's functions at all masses ≥ m at the price of one inversion at mass m.

Classification:


Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Externe Publikationen > Vita Publikationen
Institutssammlungen > JSC
NIC

 Datensatz erzeugt am 2019-01-31, letzte Änderung am 2020-09-14



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)