001     860341
005     20200914094709.0
024 7 _ |a 10.1016/S0370-2693(96)80015-3
|2 doi
024 7 _ |a 0370-2693
|2 ISSN
024 7 _ |a 1873-2445
|2 ISSN
037 _ _ |a FZJ-2019-01116
082 _ _ |a 530
100 1 _ |a Eicker, N.
|0 P:(DE-Juel1)132090
|b 0
|u fzj
245 _ _ |a Evaluating sea quark contributions to flavour-singlet operators in lattice QCD
260 _ _ |a Amsterdam
|c 1996
|b North-Holland Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600069609_27503
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a full QCD lattice study with Nf = 2 Wilson fermions, we seek to optimize the signals for the disconnected contributions to the matrix element of flavour-singlet operators between nucleon states, which are indicative for sea quark effects. We demonstrate, in form of a fluctuation analysis to the noisy estimator technique, that — in order to achieve a tolerable signal to noise-ratio in full QCD — it is advantageous to work with a Z2-noise source rather than to rely only on gauge invariance to cancel non-gauge-invariant background. In the case of the πNσ-term, we find that 10 Z2-noise sources suffice on our sample (about 150 independent QCD configurations at β = 5.6 on 163 × 32 withκsea = 0.157, equivalent to Mπ/Mϱ = 0.76 (1), to achieve decent signals and adequate fluctuations, rather than 300 such sources as recently used in quenched simulations.
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Glässner, U.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Güsken, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hoeber, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lippert, T.
|0 P:(DE-Juel1)132179
|b 4
|u fzj
700 1 _ |a Ritzenhöfer, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schilling, K.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Siegert, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Spitz, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ueberholz, P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Viehoff, J.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/S0370-2693(96)80015-3
|g Vol. 389, no. 4, p. 720 - 726
|0 PERI:(DE-600)1466612-1
|n 4
|p 720 - 726
|t Physics letters / B B
|v 389
|y 1996
|x 0370-2693
909 C O |p extern4vita
|o oai:juser.fz-juelich.de:860341
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132090
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132179
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS LETT B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a EDITORS
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21