Journal Article FZJ-2019-01233

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Contact mechanics for polydimethylsiloxane: from liquid to solid

 ;

2018
Royal Soc. of Chemistry London

Soft matter 14(7), 1142 - 1148 () [10.1039/C7SM02216F]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Adhesion between a glass ball and a polydimethylsiloxane (PDMS) sample is dependent on the PDMS cross-link density, and the transformation of the material from the uncrosslinked liquid state to the fully crosslinked solid state is investigated in this study. The physical picture reflected a gradual transition from capillary forces driven contact mechanics to the classical Johnson–Kendall–Roberts (JKR)-type contact mechanics. PDMS was produced by mixing the base fluid and a cross-linker at a ratio of 10 : 1 and allowed to slowly cross-link at room temperature with simultaneous measurement of the ball–PDMS interaction force. The PDMS sample was in the liquid state during the first ≈16 hours, and in this case the ball–PDMS interaction was purely adhesive, i.e., no repulsive interaction was observed. Later at the PDMS gel-point the cross-linked PDMS clusters percolate, converting the fluid into a soft (fluid-filled) poroelastic solid. In the transition period, PDMS appears similar to pressure-sensitive adhesives. There we observe so-called “stringing” and permanent deformation of the material impacted by the ball. At room temperature, it takes more than ∼100 hours for PDMS to fully cross-link that can be confirmed by the comparison with the earlier-studied reference PDMS produced at elevated temperatures.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 141 - Controlling Electron Charge-Based Phenomena (POF3-141) (POF3-141)

Appears in the scientific report 2018
Database coverage:
Medline ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institutssammlungen > IAS > IAS-1
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2019-02-04, letzte Änderung am 2021-01-30


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)