Conference Presentation (After Call) FZJ-2019-01342

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Interactions between forsterite support material and LSM cathode during co-sintering of an all-ceramic SOFC

 ;  ;  ;  ;

2018

15th International Conference on Inorganic Membranes, ICIM 2018, DresdenDresden, Germany, 18 Jun 2018 - 21 Jun 20182018-06-182018-06-21

Please use a persistent id in citations:

Abstract: A novel, cost-efficient, all-ceramic Solid Oxide fuel Cell (SOFC) is investigated in the project KerSOLife100 funded by the German Ministry for Economic Affairs and Energy (BMWi). The design includes a low-cost mechanical support material, and an alternative cost-efficient production route is applied. The support material is a porous membrane made of doped forsterite (Mg2SiO4), placed adjacent to the cathode (air) side of the cell. The alternative manufacturing route involves a single step co-firing process of the forsterite and all functional layers. The co-firing temperature is currently set to <1300°C, which is significantly lower than the maximal temperature applied in the usual SOFC manufacturing sequence. So far, the effects of the use of forsterite as support material and the co-firing production route on the performance and the lifetime of this SOFC concept are scarcely examined. Thus, the present investigations are analyzing the interactions between the forsterite support material and a cathode material occurring during the high temperature sintering step. The cathode material investigated in this study is LaxSr(1-x)MnO3, which is generally known for its high chemical stability relatively to other available cathode materials. Inter-diffusion and secondary phase formations between the layers are characterized by means of energy dispersive X-ray spectroscopy and X-ray crystallography. As well, the outcome of the co-firing on the macro scale geometry and the microstructural properties of the cathode is evaluated.

Keyword(s): Materials Science (2nd)


Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)

Appears in the scientific report 2019
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Presentations > Conference Presentations
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database
Open Access

 Record created 2019-02-11, last modified 2024-07-11