001     860741
005     20240711113527.0
024 7 _ |a 10.1088/1741-4326/aafe8d
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000457845500001
|2 WOS
024 7 _ |a altmetric:54987946
|2 altmetric
037 _ _ |a FZJ-2019-01405
082 _ _ |a 620
100 1 _ |a Reinhart, Michael
|0 P:(DE-Juel1)144825
|b 0
|e Corresponding author
245 _ _ |a Diffusion model of the impact of helium and argon impurities on deuterium retention in tungsten
260 _ _ |a Vienna
|c 2019
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550591120_30394
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The influence of helium and argon impurities on the deuterium retention in tungsten is investigated by a numerical diffusion model, which treats diffusing depth profiles for deuterium and helium or argon in tungsten, taking into account the suggested effects of helium or argon. With helium, a helium nanobubble layer builds up at the surface of the sample, with depths higher than the penetration depth of the incident helium and deuterium ions. The nanobubbles form a porous network, which allows the release of trapped deuterium by surface recombination and diffusion through the pores to the surface. For argon, only a shallow layer of argon-induced defects exists, which also act as trapping sites for deuterium. A number of experiments with tungsten samples were conducted at the linear plasma device PSI-2 in support of the model. Helium and argon were admixed to deuterium plasma in ratios of up to 8% for otherwise similar exposure conditions. In addition, a variation of ion fluences was performed for investigation of the onset and evolution of the effects of impurities. The model shows that the influence on the deuterium retention both for helium nanobubbles as well as for argon-induced defects depends strongly on the ratio between the thickness of the helium- or argon-affected layer and the penetration depth of deuterium ions.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 1
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 2
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 3
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 4
773 _ _ |a 10.1088/1741-4326/aafe8d
|g Vol. 59, no. 4, p. 046004 -
|0 PERI:(DE-600)2037980-8
|n 4
|p 046004 -
|t Nuclear fusion
|v 59
|y 2019
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/8115896_0.pdf
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/Diffusion%20model%20of%20the%20impact%20of%20helium%20and%20argon%20impurities%20on%20deuterium%20retention%20in%20tungsten_revised_pdf.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/Reinhart_2019_Nucl._Fusion_59_046004.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/8115896_0.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/Diffusion%20model%20of%20the%20impact%20of%20helium%20and%20argon%20impurities%20on%20deuterium%20retention%20in%20tungsten_revised_pdf.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860741/files/Reinhart_2019_Nucl._Fusion_59_046004.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860741
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144825
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21