000860771 001__ 860771
000860771 005__ 20240610120015.0
000860771 0247_ $$2arXiv$$aarXiv:1901.03863
000860771 0247_ $$2doi$$a10.1103/PhysRevFluids.4.024201
000860771 0247_ $$2Handle$$a2128/21936
000860771 0247_ $$2WOS$$aWOS:000458850500002
000860771 0247_ $$2altmetric$$aaltmetric:55402554
000860771 037__ $$aFZJ-2019-01434
000860771 082__ $$a530
000860771 1001_ $$0P:(DE-Juel1)172729$$aChien, Wei$$b0
000860771 245__ $$aSharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells
000860771 260__ $$aCollege Park, MD$$bAPS$$c2019
000860771 3367_ $$2DRIVER$$aarticle
000860771 3367_ $$2DataCite$$aOutput Types/Journal article
000860771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565268091_22949
000860771 3367_ $$2BibTeX$$aARTICLE
000860771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860771 3367_ $$00$$2EndNote$$aJournal Article
000860771 520__ $$aSorting cells based on their intrinsic properties is a highly desirable objective, since changes in cell deformability are often associated with various stress conditions and diseases. Deterministic lateral displacement (DLD) devices offer high precision for rigid spherical particles, while their success in sorting deformable particles remains limited due to the complexity of cell traversal in DLDs. We employ mesoscopic hydrodynamics simulations and demonstrate prominent advantages of sharp-edged DLD obstacles for probing deformability properties of red blood cells (RBCs). By consecutive sharpening of the pillar shape from circular to diamond to triangular geometry, a pronounced cell bending around an edge is achieved, serving as a deformability sensor. Bending around the edge is the primary mechanism, which governs the traversal of RBCs through such DLD device. This strategy requires an appropriate degree of cell bending by fluid stresses, which can be controlled by the flow rate, and exhibits good sensitivity to moderate changes in cell deformability. We expect that similar mechanisms should be applicable for the development of novel DLD devices that target intrinsic properties of many other cells.
000860771 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000860771 536__ $$0G:(DE-Juel1)jics21_20181101$$aBlood flow in microvascular networks (jics21_20181101)$$cjics21_20181101$$fBlood flow in microvascular networks$$x1
000860771 588__ $$aDataset connected to arXivarXiv
000860771 7001_ $$0P:(DE-Juel1)161194$$aHenry, Ewan$$b1
000860771 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry$$b2$$eCorresponding author
000860771 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b3$$eCorresponding author
000860771 773__ $$0PERI:(DE-600)2868596-9$$a10.1103/PhysRevFluids.4.024201$$gVol. 4, no. 2, p. 024201$$n2$$p024201-1$$tPhysical review fluids$$v4$$x2469-990X$$y2019
000860771 8564_ $$uhttps://juser.fz-juelich.de/record/860771/files/PhysRevFluids.4.024201.pdf$$yOpenAccess
000860771 8564_ $$uhttps://juser.fz-juelich.de/record/860771/files/PhysRevFluids.4.024201.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000860771 909CO $$ooai:juser.fz-juelich.de:860771$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000860771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860771 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000860771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV FLUIDS : 2017
000860771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860771 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860771 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860771 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860771 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860771 9141_ $$y2019
000860771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166080$$aForschungszentrum Jülich$$b0$$kFZJ
000860771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172729$$aForschungszentrum Jülich$$b1$$kFZJ
000860771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b2$$kFZJ
000860771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000860771 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000860771 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000860771 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000860771 9801_ $$aFullTexts
000860771 980__ $$ajournal
000860771 980__ $$aVDB
000860771 980__ $$aI:(DE-Juel1)ICS-2-20110106
000860771 980__ $$aI:(DE-82)080012_20140620
000860771 980__ $$aUNRESTRICTED
000860771 981__ $$aI:(DE-Juel1)IBI-5-20200312
000860771 981__ $$aI:(DE-Juel1)IAS-2-20090406