000860852 001__ 860852
000860852 005__ 20240708132920.0
000860852 0247_ $$2doi$$a10.1016/j.jpowsour.2019.226718
000860852 0247_ $$2ISSN$$a0378-7753
000860852 0247_ $$2ISSN$$a1873-2755
000860852 0247_ $$2WOS$$aWOS:000480664400006
000860852 037__ $$aFZJ-2019-01507
000860852 082__ $$a620
000860852 1001_ $$0P:(DE-Juel1)168240$$aLi, Ruiyu$$b0$$eCorresponding author$$ufzj
000860852 245__ $$aBilayer CrN/CrCoating Modified 316L Stainless Steel Bipolar Plates for High Temperature Polymer Electrolyte Fuel Cells
000860852 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000860852 3367_ $$2DRIVER$$aarticle
000860852 3367_ $$2DataCite$$aOutput Types/Journal article
000860852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573220787_9309
000860852 3367_ $$2BibTeX$$aARTICLE
000860852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860852 3367_ $$00$$2EndNote$$aJournal Article
000860852 520__ $$aIn this work, a bilayer CrN/Cr coating was deposited on the surface of a 0.1 mm-thick SS316L specimen with a size of 60 × 60 mm2 by means of a reactive magnetron sputtering method. Using a specially-designed electrochemical cell for simulating the HT-PEFC environment, various electrochemical tests, including potentiodynamic polarization, potentiostatic polarization and EIS, were performed in order to evaluate the anti-corrosion properties and stability of the bilayer CrN/Cr coating in simulated HT-PEFC environments. Additionally, ex-situ characterizations using XRD, SEM + EDX and ICR were carried out to investigate the crystal structure and composition of CrN/Cr coating, surface morphologies and the interfacial contact resistance of samples before and after corrosion tests. The results show that the bilayer CrN/Cr coating could provide a more than 99.9% protective effect on the substrate (SS316L) in the simulated HT-PEFC environment at RT and 130 °C, and reduce the corrosion rates of BPPs more than 600 times in both the simulated cathodic and anodic environments of a HT-PEFC. Furthermore, an ICR value of CrN/Cr SS316L (5.5 mΩ cm2) is around one order of magnitude lower than that of the bare SS316L substrate (47 mΩ cm2) in a typical pressing force for assembling fuel cells (140 N cm−2).
000860852 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000860852 588__ $$aDataset connected to CrossRef
000860852 7001_ $$0P:(DE-Juel1)168222$$aCai, Yun$$b1$$ufzj
000860852 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2$$ufzj
000860852 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3$$ufzj
000860852 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.226718$$gVol. 434, p. 226718 -$$p226718 -$$tJournal of power sources$$v434$$x0378-7753$$y2019
000860852 909CO $$ooai:juser.fz-juelich.de:860852$$pVDB
000860852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168240$$aForschungszentrum Jülich$$b0$$kFZJ
000860852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168222$$aForschungszentrum Jülich$$b1$$kFZJ
000860852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
000860852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b3$$kFZJ
000860852 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b3$$kRWTH
000860852 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000860852 9141_ $$y2019
000860852 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000860852 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860852 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860852 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860852 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860852 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860852 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860852 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860852 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860852 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860852 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860852 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860852 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000860852 920__ $$lyes
000860852 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000860852 980__ $$ajournal
000860852 980__ $$aVDB
000860852 980__ $$aI:(DE-Juel1)IEK-3-20101013
000860852 980__ $$aUNRESTRICTED
000860852 981__ $$aI:(DE-Juel1)ICE-2-20101013