001     861295
005     20240619091242.0
024 7 _ |a 10.1002/pssb.201800636
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a 1521-3951
|2 ISSN
024 7 _ |a WOS:000473612400023
|2 WOS
037 _ _ |a FZJ-2019-01792
082 _ _ |a 530
100 1 _ |a Kutovyi, Yurii
|0 P:(DE-Juel1)167225
|b 0
|u fzj
245 _ _ |a Temperature-Dependent Noise and Transport in Silicon Two-Layer Nanowire FETs
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1561624863_25898
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Silicon two‐layer (TL) nanowire (NW) field‐effect transistors (FETs) are fabricated by applying a CMOS‐compatible top‐down approach to silicon on insulator (SOI) wafers with additionally epitaxially grown silicon layers. Transport and noise properties of fabricated structures with p‐type conductivity are studied in a wide temperature range (100–300 K). A random telegraph signal (RTS) noise as a special case of trapping‐detrapping processes is registered as a dominant noise component at room temperature. A shift of the characteristic corner (rollover) frequency of the RTS noise to lower frequencies with temperature decreasing is observed. By performing analysis of temperature‐dependent low‐frequency noise, the activation energy and hole capture cross section of a single trap responsible for the RTS noise are estimated to be (0.29 ± 0.02 eV) and (2.22 ± 0.15) ×10−18 cm2, respectively. Obtained values suggest that the trap can be attributed to a vacancy‐boron complex. At the temperature below 200 K fabricated devices demonstrate a clear generation‐recombination noise with power spectral density proportional to 1/f 3/2. Such noise behavior provides the evidence of diffusion‐assisted processes in two‐layer nanowire structures. This confirms the contribution of high‐doped top silicon layer to the transistor transport properties.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zadorozhnyi, Ihor
|0 P:(DE-Juel1)164241
|b 1
|u fzj
700 1 _ |a Handziuk, Volodymyr
|0 P:(DE-Juel1)164242
|b 2
|u fzj
700 1 _ |a Hlukhova, Hanna
|0 P:(DE-Juel1)164250
|b 3
|u fzj
700 1 _ |a Boichuk, Nazarii
|0 P:(DE-Juel1)171802
|b 4
|u fzj
700 1 _ |a Petrychuk, Mykhaylo
|0 P:(DE-Juel1)174126
|b 5
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/pssb.201800636
|g p. 1800636 -
|0 PERI:(DE-600)1481096-7
|n 3
|p 1800636
|t Physica status solidi / B Basic research B
|v 256
|y 2019
|x 0370-1972
856 4 _ |u https://juser.fz-juelich.de/record/861295/files/Kutovyi_et_al-2019-physica_status_solidi_%28b%29.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861295/files/Kutovyi_et_al-2019-physica_status_solidi_%28b%29.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861295
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164241
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)164242
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164250
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171802
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128738
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21