000861315 001__ 861315
000861315 005__ 20240712100844.0
000861315 0247_ $$2doi$$a10.5194/acp-19-3097-2019
000861315 0247_ $$2ISSN$$a1680-7316
000861315 0247_ $$2ISSN$$a1680-7324
000861315 0247_ $$2Handle$$a2128/21811
000861315 0247_ $$2WOS$$aWOS:000460839900003
000861315 0247_ $$2altmetric$$aaltmetric:56838324
000861315 037__ $$aFZJ-2019-01807
000861315 082__ $$a550
000861315 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
000861315 245__ $$aFrom ERA-Interim to ERA5: the considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations
000861315 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000861315 3367_ $$2DRIVER$$aarticle
000861315 3367_ $$2DataCite$$aOutput Types/Journal article
000861315 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582096456_3360
000861315 3367_ $$2BibTeX$$aARTICLE
000861315 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861315 3367_ $$00$$2EndNote$$aJournal Article
000861315 520__ $$aThe European Centre for Medium-Range Weather Forecasts' (ECMWF's) next-generation reanalysis ERA5 provides many improvements, but it also confronts the community with a “big data” challenge. Data storage requirements for ERA5 increase by a factor of ∼80 compared with the ERA-Interim reanalysis, introduced a decade ago. Considering the significant increase in resources required for working with the new ERA5 data set, it is important to assess its impact on Lagrangian transport simulations. To quantify the differences between transport simulations using ERA5 and ERA-Interim data, we analyzed comprehensive global sets of 10-day forward trajectories for the free troposphere and the stratosphere for the year 2017. The new ERA5 data have a considerable impact on the simulations. Spatial transport deviations between ERA5 and ERA-Interim trajectories are up to an order of magnitude larger than those caused by parameterized diffusion and subgrid-scale wind fluctuations after 1 day and still up to a factor of 2–3 larger after 10 days. Depending on the height range, the spatial differences between the trajectories map into deviations as large as 3 K in temperature, 30 % in specific humidity, 1.8 % in potential temperature, and 50 % in potential vorticity after 1 day. Part of the differences between ERA5 and ERA-Interim is attributed to the better spatial and temporal resolution of the ERA5 reanalysis, which allows for a better representation of convective updrafts, gravity waves, tropical cyclones, and other meso- to synoptic-scale features of the atmosphere. Another important finding is that ERA5 trajectories exhibit significantly improved conservation of potential temperature in the stratosphere, pointing to an improved consistency of ECMWF's forecast model and observations that leads to smaller data assimilation increments. We conducted a number of downsampling experiments with the ERA5 data, in which we reduced the numbers of meteorological time steps, vertical levels, and horizontal grid points. Significant differences remain present in the transport simulations, if we downsample the ERA5 data to a resolution similar to ERA-Interim. This points to substantial changes of the forecast model, observations, and assimilation system of ERA5 in addition to improved resolution. A comparison of two Lagrangian trajectory models allowed us to assess the readiness of the codes and workflows to handle the comprehensive ERA5 data and to demonstrate the consistency of the simulation results. Our results will help to guide future Lagrangian transport studies attempting to navigate the increased computational complexity and leverage the considerable benefits and improvements of ECMWF's new ERA5 data set.
000861315 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000861315 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x1
000861315 536__ $$0G:(DE-Juel1)jicg11_20090701$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20090701)$$cjicg11_20090701$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x2
000861315 588__ $$aDataset connected to CrossRef
000861315 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b1
000861315 7001_ $$0P:(DE-Juel1)173997$$aLi, Dan$$b2
000861315 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b3
000861315 7001_ $$0P:(DE-Juel1)169305$$aWu, Xue$$b4
000861315 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b5
000861315 7001_ $$0P:(DE-HGF)0$$aHeng, Yi$$b6
000861315 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b7
000861315 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b8
000861315 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b9
000861315 7001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b10
000861315 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-3097-2019$$gVol. 19, no. 5, p. 3097 - 3124$$n5$$p3097 - 3124$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000861315 8564_ $$uhttps://juser.fz-juelich.de/record/861315/files/invoice_Helmholtz-PUC-2019-15.pdf
000861315 8564_ $$uhttps://juser.fz-juelich.de/record/861315/files/acp-19-3097-2019.pdf$$yOpenAccess
000861315 8564_ $$uhttps://juser.fz-juelich.de/record/861315/files/invoice_Helmholtz-PUC-2019-15.pdf?subformat=pdfa$$xpdfa
000861315 8564_ $$uhttps://juser.fz-juelich.de/record/861315/files/acp-19-3097-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861315 8767_ $$8Helmholtz-PUC-2019-15$$92019-04-01$$d2019-04-03$$eAPC$$jZahlung erfolgt$$pacp-2018-1199
000861315 909CO $$ooai:juser.fz-juelich.de:861315$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b1$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173997$$aForschungszentrum Jülich$$b2$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b3$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169305$$aForschungszentrum Jülich$$b4$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b5$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b7$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b8$$kFZJ
000861315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b9$$kFZJ
000861315 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000861315 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x1
000861315 9141_ $$y2019
000861315 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861315 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861315 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861315 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000861315 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861315 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861315 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861315 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861315 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861315 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861315 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000861315 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000861315 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861315 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861315 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861315 920__ $$lyes
000861315 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000861315 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000861315 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000861315 9801_ $$aAPC
000861315 9801_ $$aFullTexts
000861315 980__ $$ajournal
000861315 980__ $$aVDB
000861315 980__ $$aI:(DE-Juel1)JSC-20090406
000861315 980__ $$aI:(DE-Juel1)IEK-7-20101013
000861315 980__ $$aI:(DE-82)080012_20140620
000861315 980__ $$aAPC
000861315 980__ $$aUNRESTRICTED
000861315 981__ $$aI:(DE-Juel1)ICE-4-20101013