Journal Article FZJ-2019-01859

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solventsiek

 ;  ;  ;

2019
RSC72819 London

Journal of materials chemistry / A Materials for energy and sustainability A 7(12), 7082-7091 () [10.1039/C8TA09504C]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: Ultrathin (∼200 nm) and defect-free carbon molecular sieve (CMS) membranes were successfully fabricated on the inner surface of hierarchically structured porous supports (γ-Al2O3 layer coated α-Al2O3 tubes) via pyrolysis of a polyimide precursor at 700 °C. The chemical structure of the carbonized samples was examined in detail by means of Raman spectroscopy and X-ray photoelectron spectroscopy. From these studies, it was found that the carbonized samples consist of graphitic carbon layers containing sp3-type defects. The synthesized CMS membranes showed an unprecedentedly high H2 permeance of up to 1.1 × 10−6 mol m−2 s−1 Pa−1 and ideal separation factors of 24, 130 and 228 for H2/CO2, H2/N2 and H2/CH4, respectively at 200 °C. Furthermore, outstanding separation factors of 791 and 1946 with a water flux of about 0.5 kg m−2 h−1 were obtained at 70 °C for the pervaporation of 10 wt% water-containing binary mixtures of methanol and ethanol, respectively. These results unambiguously show that the carbon membranes developed in this work possess the potential for high-temperature hydrogen purification and dewatering of organic solvents.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2019
Database coverage:
Medline ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2019-03-13, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)