000861558 001__ 861558
000861558 005__ 20210130000849.0
000861558 0247_ $$2doi$$a10.1063/1.5038258
000861558 0247_ $$2ISSN$$a0034-6748
000861558 0247_ $$2ISSN$$a1089-7623
000861558 0247_ $$2ISSN$$a1527-2400
000861558 0247_ $$2Handle$$a2128/21887
000861558 0247_ $$2pmid$$apmid:30501331
000861558 0247_ $$2WOS$$aWOS:000451735700054
000861558 0247_ $$2altmetric$$aaltmetric:39316310
000861558 037__ $$aFZJ-2019-02009
000861558 082__ $$a620
000861558 1001_ $$0P:(DE-HGF)0$$aHollmann, Arne$$b0
000861558 245__ $$a30 GHz-voltage controlled oscillator operating at 4 K
000861558 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2018
000861558 3367_ $$2DRIVER$$aarticle
000861558 3367_ $$2DataCite$$aOutput Types/Journal article
000861558 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553235868_17236
000861558 3367_ $$2BibTeX$$aARTICLE
000861558 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861558 3367_ $$00$$2EndNote$$aJournal Article
000861558 520__ $$aSolid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and therefore a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator at cryogenic temperature. We determined the frequency and output power dependence on temperature and magnetic field up to 5 T and measured the temperature influence on its noise performance. The device maintains its full functionality from 300 K to 4 K. The carrier frequency at 4 K increases by 3% with respect to the carrier frequency at 300 K, and the output power at 4 K increases by 10 dB relative to the output power at 300 K. The frequency tuning range of approximately 20% remains unchanged between 300 K and 4 K. In an in-plane magnetic field of 5 T, the carrier frequency shifts by only 0.02% compared to the frequency at zero magnetic field.
000861558 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000861558 588__ $$aDataset connected to CrossRef
000861558 7001_ $$0P:(DE-HGF)0$$aJirovec, Daniel$$b1
000861558 7001_ $$0P:(DE-HGF)0$$aKucharski, Maciej$$b2
000861558 7001_ $$0P:(DE-HGF)0$$aKissinger, Dietmar$$b3
000861558 7001_ $$0P:(DE-HGF)0$$aFischer, Gunter$$b4
000861558 7001_ $$0P:(DE-Juel1)172641$$aSchreiber, Lars$$b5$$eCorresponding author$$ufzj
000861558 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/1.5038258$$gVol. 89, no. 11, p. 114701 -$$n11$$p114701 -$$tReview of scientific instruments$$v89$$x1089-7623$$y2018
000861558 8564_ $$uhttps://juser.fz-juelich.de/record/861558/files/1.5038258.pdf$$yPublished on 2018-11-13. Available in OpenAccess from 2019-11-13.
000861558 8564_ $$uhttps://juser.fz-juelich.de/record/861558/files/1804.09522.pdf$$yPublished on 2018-11-13. Available in OpenAccess from 2019-11-13.
000861558 8564_ $$uhttps://juser.fz-juelich.de/record/861558/files/1.5038258.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-13. Available in OpenAccess from 2019-11-13.
000861558 8564_ $$uhttps://juser.fz-juelich.de/record/861558/files/1804.09522.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-11-13. Available in OpenAccess from 2019-11-13.
000861558 909CO $$ooai:juser.fz-juelich.de:861558$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861558 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172641$$aForschungszentrum Jülich$$b5$$kFZJ
000861558 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000861558 9141_ $$y2019
000861558 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861558 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861558 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861558 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861558 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2017
000861558 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861558 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861558 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861558 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861558 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861558 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861558 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861558 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861558 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861558 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861558 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861558 920__ $$lyes
000861558 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000861558 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000861558 980__ $$ajournal
000861558 980__ $$aVDB
000861558 980__ $$aUNRESTRICTED
000861558 980__ $$aI:(DE-Juel1)PGI-11-20170113
000861558 980__ $$aI:(DE-82)080009_20140620
000861558 9801_ $$aFullTexts