| 001 | 861558 | ||
| 005 | 20210130000849.0 | ||
| 024 | 7 | _ | |a 10.1063/1.5038258 |2 doi |
| 024 | 7 | _ | |a 0034-6748 |2 ISSN |
| 024 | 7 | _ | |a 1089-7623 |2 ISSN |
| 024 | 7 | _ | |a 1527-2400 |2 ISSN |
| 024 | 7 | _ | |a 2128/21887 |2 Handle |
| 024 | 7 | _ | |a pmid:30501331 |2 pmid |
| 024 | 7 | _ | |a WOS:000451735700054 |2 WOS |
| 024 | 7 | _ | |a altmetric:39316310 |2 altmetric |
| 037 | _ | _ | |a FZJ-2019-02009 |
| 082 | _ | _ | |a 620 |
| 100 | 1 | _ | |a Hollmann, Arne |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a 30 GHz-voltage controlled oscillator operating at 4 K |
| 260 | _ | _ | |a [S.l.] |c 2018 |b American Institute of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1553235868_17236 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Solid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and therefore a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator at cryogenic temperature. We determined the frequency and output power dependence on temperature and magnetic field up to 5 T and measured the temperature influence on its noise performance. The device maintains its full functionality from 300 K to 4 K. The carrier frequency at 4 K increases by 3% with respect to the carrier frequency at 300 K, and the output power at 4 K increases by 10 dB relative to the output power at 300 K. The frequency tuning range of approximately 20% remains unchanged between 300 K and 4 K. In an in-plane magnetic field of 5 T, the carrier frequency shifts by only 0.02% compared to the frequency at zero magnetic field. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Jirovec, Daniel |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Kucharski, Maciej |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Kissinger, Dietmar |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Fischer, Gunter |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Schreiber, Lars |0 P:(DE-Juel1)172641 |b 5 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1063/1.5038258 |g Vol. 89, no. 11, p. 114701 - |0 PERI:(DE-600)1472905-2 |n 11 |p 114701 - |t Review of scientific instruments |v 89 |y 2018 |x 1089-7623 |
| 856 | 4 | _ | |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13. |u https://juser.fz-juelich.de/record/861558/files/1.5038258.pdf |
| 856 | 4 | _ | |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13. |u https://juser.fz-juelich.de/record/861558/files/1804.09522.pdf |
| 856 | 4 | _ | |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13. |x pdfa |u https://juser.fz-juelich.de/record/861558/files/1.5038258.pdf?subformat=pdfa |
| 856 | 4 | _ | |y Published on 2018-11-13. Available in OpenAccess from 2019-11-13. |x pdfa |u https://juser.fz-juelich.de/record/861558/files/1804.09522.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:861558 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)172641 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REV SCI INSTRUM : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|